The EURISOL DESIGN STUDY PROPOSAL

The writing group:

Graziano Fortuna, Yorick Blumenfeld, Peter Butler, Mats Lindroos (for β beams), John Cornell (technical coordinator) and the EURISOL_DS staff.

The Physics Program

- Nuclear structure far from stability (Gelletly, Aystö)
- Nuclear Dynamics and the nuclear EOS (Gulminelli)
- Nuclear Astrophysics (Kratz)
- Fundamental interactions and symmetries (Jungmann)

and

• Neutrino physics with β-beams

Radioactive beam production: Two complementary methods

NuPECC recommends the construction of 2 'next generation' RIB infrastructures in Europe, i.e. one ISOL and one in-flight facility. The in-flight machine would arise from a major upgrade of the current GSI facility, while EURISOL would constitute the new ISOL facility

The EURISOL RTD in the 5th Framework (2000-2003)

- Coordinated by GANIL and Jean Vervier
- 11 institutions from 8 countries
- 5 working groups
 - Key experiments
 - Driver accelerator
 - Targets and ion source
 - Mass separator and post accelerator
 - Instrumentation
- http://www.ganil.fr/eurisol

The Eurisol Concept

Total cost : 613 M€

Some beam intensities

Calculations for EURISOL : Helge Ravn

Fig. 5.2: The region of the chart of nuclides that illustrates the interesting doubly-magic nuclei far from stability and a comparison of their projected rates (as in figure 5.1) at EURISOL and the future GSI facility (SIS 200').

The beta-beam concept

The EURISOL Road Map

- Vigorous scientific exploitation of current ISOL facilities: EXCYT, Louvain, REX/ISOLDE, SPIRAL
- Construction of intermediate generation facilities : MAFF, REX upgrade, SPES, SPIRAL2
- Design and prototyping of the most specific and challenging parts of EURISOL in the framework of EURISOL_DS.

The EURISOL_DS proposal in the 6th framework

- Detailed engineering oriented studies and technical prototyping work
- 21 participants from 14 countries
- 21 contributors from Europe, Asia and North America
- Total Cost : 33 M€
- Requested contribution from EU: 9.16 M€

11 Tasks

Physics, beams and safety

- Physics and instrumentation (Liverpool)
- Beam intensity calculations (GSI)
- Safety and radioprotection (Saclay)
- Accelerators: Synergies with HIPPI (CARE)
 - Proton accelerator design (INFN Legnaro)
 - Heavy ion accelerator design (GANIL)
 - SC cavity development (IPN Orsay): SC cavity prototypes and multipurpose cryomodule
- Targets and ion sources: Synergies with spallation sources
 - Multi-MW target station (CERN): mercury converter
 - Direct target (CERN) : Several target-ion source prototypes
 - Fission target (INFN Legnaro) : UC_x target
- **BB**: Synergies with BENE
 - Beam preparation (Jyväskylä) : 60 GHz ECR source
 - Beta-beam aspects (CERN)

Management Structure

