ACCELERATOR ASPECTS

W. T. Weng Brookhaven National Laboratory

Physics with a Multi-MW Proton Source May 25-27, 2004, CERN

Thanks

• I would like to thank the organizer and CERN for the well-organized workshop on the important physics to be done at MW proton accelerators, with potential of fundamental discoveries, also for the hospitality given to us.

Outline

- 1. Summary of Talks on Accelerator Design
- 2. Design of the Proton Driver
- 3. Target/Horn and Neutrino Beam
- 4. Beam Losses and Shielding
- 5. RAMI
- 6. R&D and Upgrade Paths
- 7. Conclusions

Talks in Accelerator Session

- 1.R. Garoby, SPL at CERN
- 2. C. Prior, RSC Options
- 3. H. Haseroth, Target/Horn & NuFact
- 4. M. Apollonio, HARP
- 5. A. Mueller, Nuclear Phys/EURISOL
- 6.M. Lindroos, Beta-Beam

SPL block diagram (CDR 1) Design of the Proton Driver

RAL 5 GeV, 50 Hz, 4 MW Driver

- "Proof of Principle Study"
- Based on double rings of radii in ratio 1:2, frequencies 2:1
- Beam prepared for injection in linac and achromatic arc
- Charge exchange injection via Al₂O₃ foil in booster rings: loss at 10⁻⁴ level mainly from scattering in foil
- Acceleration in main synchrotrons with ns bunch compression achieved with combination of RF harmonics

MW Proton Drivers using Rapid Cycling Synchrotrons

C.R. Prior

Targetry

Many difficulties: enormous power density⇒ lifetime problemspion capture

Replace target between bunches:

Liquid mercury jet or rotating solid target

Stationary target:

Comments on Accelerator Design

- The choice between SPL and RCS has to be decided on the basis of physics goal, but from technical point of view, the SPL is a convincing alternative with great potential to better satisfy most of the needs presented in this workshop.
- The choice of bulk Nb cavity can provide higher gradient, hence higher energy, or shorter physical length.
- There are existence proof of high power linac; such as: LAMPF and SNS to assure the feasibility of SPL.

Accelerator design,--- continued

- The current SPL design is capable of realizing its goal and is flexible enough for many future programs.
- The realization of linac4 is a very valuable first step that can also benefit LHC and proton physics at CERN in general.
- The challenge of the SPL is in its careful confirmation of emittance growth, beam loss, radiation shielding, reliability, and cost reduction.

Target / Horn and Neutrino Beam

- As has been shown that 1 MW target/horn system is feasible; however, the 4 MW one needs active R&D for realization.
- Current international collaborations include,
 - 1. Material testing at BNL
 - 2. Proposed Hg jet testing at CERN
- The target/horn system is integrally connected to the proton driver and physics requirements, hence, close communication among those groups are essential.

Beam Losses and Shielding

- Develop realistic analysis of beam losses, collimation, and shielding requirements.
- Remote handling should be provided to reduce human exposure and equipment damage.

RAMI

- For a MW facility, the provisions for reliability, availability, and maintenability has to be designed in in the beginning.
- The radiation shielding, spares, and the maintenance and repair procedure are part of the design thinking

R&D and Upgrade Paths

- The suggested R&D items include, ion source, chopper, SRF cavity, target/horn which should be supported with vigor to meet the schedule requirement.
- Anticipate possible different operation modes and upgrade paths now to minimize cost and interference later.

Summary and Conclusions

- The choice of an SPL for the CERN proton driver is realistic and competitive which has no show-stoppers in its current design.
- The emittance preservation in the SPL needs further analysis with correction provisions.
- Realistic target/horn has to be developed.
- CERN should play important role, if not the leading role, in the international collaboration of R&D efforts and encourage participation from its staff, as long as CERN's core mission is not compromised.

Conclusions,--- continued

 Current conceived applications are too varied for an effective project. Intensive discussion among accelerator experts and physicists has to take place to identify realistic phase-I experiments to select proper accelerator configuration (SCL vs RCS), intensity, energy, pulse length, and target/horn design for optimal secondary beam spectrum. Then, other applications and further upgrades can be contemplated.

