ν oscillation physics from a MWatt proton source

P. Hernández Universidad de Valencia

Introduction

u are the most elusive particles of the MSM:

 $m_{\nu} \simeq 0, \ Q_{em} = 0, \ Q_{color} = 0, \ Q_{SU(2) \times U(1)/U(1)_{em}} \neq 0$

Nevertheless they have provided essential information on the two most striking features of the fermionic content of the SM:

• Left-handedness of the weak interactions

• The family structure:
$$N_
u = rac{\Gamma_{
m inv}}{\Gamma_{
uar
u}} = 2.984 \pm 0.008$$

The impressive ν -experiments of recent years have revealed that they have a tiny mass:

• A new hierarchy in the flavour sector ? A new physics scale ?

Neutrino masses

In the SM fermion masses originate in the interaction with the Higgs field:

A new physics scale, M, can explain the new hierarchy (if $\sim M_{GUT}$) and other misteries of the flavour sector and is associated to the breaking of the a global symmetry of the SM: total lepton number L !

Neutrino masses and mixing

If the fermions have a mass the charged current interactions are not flavour diagonal: there is mixing among the families

The NMS matrix has four physical parameters:

	Angles Phases	
Dirac	3	1
Majorana	3	3

$$\begin{split} V_{NMS}^{\text{Dirac}} &\equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12}e^{i\delta} & 0 \\ -s_{12}e^{i\delta} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ V_{MNS}^{\text{Majorana}} &= V_{MNS}(\theta_{12}, \theta_{13}, \theta_{23}, \delta) \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_1} & 0 \\ 0 & 0 & e^{i\alpha_2} \end{pmatrix} \end{split}$$

More homework than discover the Higgs to complete the SM!

 ν -masses are not just the last fundamental parameters in the SM to add to the Particle Data Book...

• If they are Majorana they provide a window into a new physics scale which might give us a clue on the origin of fermion masses (flavour sector): $\{\lambda_f\} \rightarrow 22/26$ parameters of the SM

why 3 families ? why is there a hierarchy between them ?

- Lepton number violation provides a simple mechanism to explain the observed baryon asymmetry in the Universe \rightarrow leptogenesis
- Big Bang nucleosynthesis is very sensitive to the number of light neutrino species
- they contribute to the energy density of the Universe (→ dark matter, large scale structure...)

Neutrino oscillations

Pontecorvo

Neutrinos produced in a flavour eigenstate can change flavour as they propagate:

$$x = 0 |\nu_{\alpha}\rangle = \sum_{j} V_{\alpha j} |\nu_{j}\rangle \Rightarrow |\nu_{\alpha}(x)\rangle = \sum_{j} V_{\alpha j} e^{iEt} e^{ixp_{j}} |\nu_{j}\rangle$$

Vaccuum oscillations (2 families): $L_{\rm osc}(km) = 2\pi \frac{E_{\nu}(GeV)}{1.27\Delta m^2(eV^2)}$

$$P_{\alpha\beta} = \sin^2 2\theta \ \sin^2 \left(\frac{\Delta m^2 L}{4E_{\nu}}\right) \rightarrow \text{appearance}$$

 $P_{\alpha\alpha} = 1 - P_{\alpha\beta} < 1 \rightarrow \text{disappearance}$

Solar ν oscillations

Many beautiful experiments (Homestake, Gallex, Sage, Kamiokande, SuperKamiokande, SNO) have shown that the Sun shines more ν_{μ}, ν_{τ} than ν_e :

$$\begin{split} \mathbf{v}_{\mathbf{e}} \quad \phi_{\mathbf{8}_{B}}^{SNO-CC}(\nu_{e}) &= 1.76^{+0.06}_{-0.05}(\mathrm{stat})^{+0.09}_{-0.09}(\mathrm{syst}) \times 10^{6} cm^{-2} s^{-1} \\ \mathbf{v}_{\mathbf{\mu},\tau} \quad \phi_{\mathbf{8}_{B}}^{SNO-NC}(\nu_{e,\mu,\tau}) &= 5.09^{+0.44}_{-0.43}(\mathrm{stat})^{+0.46}_{-0.43}(\mathrm{syst}) \times 10^{6} cm^{-2} s^{-1} \end{split}$$

Confirmed by a reactor ν experiment: KamLAND (2002)

 $\bar{\nu}_e$ disappearance

 $\langle E_{\nu}({\rm MeV}) \rangle / L(100 km) \sim 10^{-5} {\rm eV}^2$

Solar ν oscillations

Global fit to the $\nu_e(\bar{\nu}_e) \rightarrow \nu_x(\bar{\nu}_x)$ oscillation hypothesis

 $\Delta m^2_{solar} = 7.1^{+1.0}_{-0.3} \cdot 10^{-5} \text{eV}^2 \qquad \theta_{solar} = 32.5^{\circ +1.7}_{-1.6}$

Atmospheric ν oscillations

SuperKamiokande (1998)

Less ν_{μ} than expected come from below and a zenith angle dependence compatible with the oscillation E/Ldependence

 $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{\tau}(\bar{\nu}_{\tau})$

Confirmation of the oscillation hypothesis in accelerator ν experiments

$$|\Delta m_{\rm atmos}^2| \sim \frac{E_{\nu}(1 - 10GeV)}{L(10^2 - 10^3 km)}$$

Three such conventional beams KEK-Kamioka (235km), Fermilab-Soudan (730km), CERN-Gran Sasso (730km) will search for the disappearance of ν_{μ} or appearance of ν_{τ} :

K2K: $\sim 3\sigma$ evidence of ν_{μ} disappearance

Combined analysis SK+K2K:

$$\Delta m^2_{atmos} = 2.6(4) \cdot 10^{-3} \text{eV}^2$$

0.75 < tan² θ_{atmos} < 1.3

Atmos \oplus Solar oscillations with 3 massive neutrinos

u spectrum: $\Delta m^2_{23} = m^2_3 - m^2_2 = \Delta m^2_{atmos}, \ \Delta m^2_{12} = m^2_2 - m^2_1 = \Delta m^2_{solar}$

u mixing matrix: \oplus Chooz $\theta_{23} \rightarrow \theta_{atmos}$, $\theta_{12} \rightarrow \theta_{solar}$

$$V_{MNS} \simeq \begin{pmatrix} 0.84 & 0.54 & s_{13}e^{-i\delta} \\ -\frac{1}{\sqrt{2}}(0.54 + 0.84s_{13}e^{i\delta}) & \frac{1}{\sqrt{2}}(0.84 - 0.54s_{13}e^{i\delta}) & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}(0.54 - 0.84s_{13}e^{i\delta}) & -\frac{1}{\sqrt{2}}(0.84 + 0.54s_{13}e^{i\delta}) & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_1} & 0 \\ 0 & 0 & e^{i\alpha_2} \end{pmatrix}$$

 $heta_{13} \leq 8^\circ \quad \delta, lpha_1, lpha_2 \quad {\sf unconstrained}$

The homework

After the next generation of neutrino experiments we will probably be far from having the complete picture:

- 1. Measure better $(\Delta m_{23}^2, \theta_{23})$ and $(\Delta m_{12}^2, \theta_{12})$ $\theta_{23} = \pi/4$ fundamental symmetry ?
- 2. Establish 3 family mixing: θ_{13} , δ
- 3. Establish if CP violation occurs: ie. $\sin \delta \neq 0$
- 4. Find the correct spectrum: ie. $\Delta m^2_{atmos} > {
 m or} < 0$

Precision ν osc. experiments $@\langle E_{\nu} \rangle/L \sim \Delta m^2_{atmos}$

- 5. Establish Majorananess and phases α_1 , α_2
- 6. Find absolute ν mass scale \leftrightarrow new physics scale

End-point of tritium β -decay Rare $\not L$ violating decays: $0\nu\beta\beta$ decay 3ν mixing \leftrightarrow link between atmospheric and solar oscillations (θ_{13})

Measure oscillations $\nu_e \leftrightarrow \nu_\mu, \nu_\tau$ or $\bar{\nu}_e \leftrightarrow \bar{\nu}_\mu, \bar{\nu}_\tau$ with $L_{osc} \sim \frac{E_\nu}{\Delta m^2_{atmos}}$

$$\begin{array}{c|c} \theta_{13} \equiv 0 & \theta_{13} \neq 0 \\ \hline P_{\nu_{c}\nu_{\mu}(\bar{\nu}_{c}\bar{\nu}_{\mu})} = c_{23}^{2} \sin^{2} 2\theta_{12} \sin^{2} \left(\frac{\Delta_{12}L}{2}\right) & P_{\nu_{c}\nu_{\mu}(\bar{\nu}_{c}\bar{\nu}_{\mu})} = c_{23}^{2} \sin^{2} 2\theta_{12} \sin^{2} \left(\frac{\Delta_{12}L}{2}\right) \\ & + s_{23}^{2} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta_{23}L}{2}\right) \\ & + \tilde{J} \cos \left(\pm \delta - \frac{\Delta_{23}L}{2}\right) \frac{\Delta_{12}L}{2} \sin \left(\frac{\Delta_{23}L}{2}\right) \\ \hline \left(\tilde{J} \equiv c_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23}, \quad \Delta_{ij} \equiv \frac{\Delta m_{1j}^{2}}{2E_{\nu}}\right) \\ \hline \end{array}$$

Leptonic CP violation \leftrightarrow **disentangle** (θ_{13}, δ) and $\delta \neq 0$

Observability of CP-violation \leftrightarrow measurable CP-asymmetries:

$$A_{\alpha\beta}^{CP} \equiv \frac{P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})}{P(\nu_{\alpha} \to \nu_{\beta}) + P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})} = \frac{2\sin\delta c_{13}\sin2\theta_{13}\sin2\theta_{13}\frac{\Delta m_{12}^2 L}{\sin2\theta_{12}\frac{\Delta m_{12}^2 L}{4E_{\nu}}}\sin2\theta_{23}\sin^2\frac{\Delta m_{13}^2 L}{4E_{\nu}}}{P_{\nu_{\alpha}\nu_{\beta}}^{CP-even}}$$

Asymmetries can be quite large for subleading transitions $u_e
ightarrow
u_\mu,
u_ au$:

 $\mathcal{O}(1)$ when the atmospheric and solar oscillation terms are of similar size

But disentangling (θ_{13}, δ) is not so easy due to correlations and degeneracies!

Burguet-Castell, Gavela, Gómez-Cadenas, P.H., Mena, hep-ph/0103258

At fixed E_{ν}, L there are generically two solutions for (θ_{13}, δ) :

- Same problem for E_{ν} integrated signals, but the dependence of the fake solution is no longer E_{ν}/L
- Correlations with the other oscillation parameters: $sign(\Delta m_{23}^2)$, $sign(\cos \theta_{23})$ Minakata, Nunokawa hep-ph/0108085; Barger, Marfatia, Whisnant, hep-ph/0112119

Resolving degeneracies

• Have spectral information on oscillation signals $\rightarrow \nu$ energy resolution

$$\begin{split} & P_{\nu_e\nu_\mu(\bar{\nu}_e\bar{\nu}_\mu)}(E_\nu,\theta_{13},\delta) \text{ and} \\ & P_{\nu_e\nu_\mu(\bar{\nu}_e\bar{\nu}_\mu)}(E_\nu,\theta_{13}^{\text{fake}}(\langle E_\nu\rangle),\delta^{\text{fake}}(\langle E_\nu\rangle)) \\ \text{are equal at } E_\nu &= \langle E_\nu\rangle \text{ but differ elsewhere} \end{split}$$

- Combine experiments differing: $\langle E_{\nu} \rangle / L$, neutrino fluxes or matter effects
- Include measurements of other flavor channels: silver channel $u_e \rightarrow
 u_{ au}$

Donini, Meloni, Miggliozzi, hep-ph/0206034 Donini, Meloni, Rigolin, hep-ph/hep-ph/0312072

Determine the neutrino spectrum

The same measurements are sensitive to $sign(\Delta m_{13}^2)$, because neutrino propagation in the Earth gets modified by coherent forward scattering on *Wolfenstein, Mikheyev,Smirnov*

$$|\Delta m_{13}^2| \quad \Rightarrow |\Delta m_{13}^2 \pm 2\sqrt{2}G_F N_e E_\nu| \qquad \sin^2 2\theta_{13} \quad \Rightarrow \sin^2 2\theta_{13} \left(\frac{\Delta m_{13}^2}{\Delta m_{13}^2 \pm 2\sqrt{2}G_F N_e E_\nu}\right)^2$$

0

For $E_{\nu} \sim O(10) \text{GeV} \rightarrow \text{large amplification/suppression of } P_{\nu_e \rightarrow \nu_{\mu}}$ depending on the sign (Δm_{13}^2)

The experimental challenge

We need to measure for the first time small oscillation probabilities at $E_{\nu}/L \sim \Delta m^2_{atmos}$: need more intense and purer ν sources

Zuchelli

Superbeams:

P. Migliozzi, hep-ph/0311269

 $lpha \equiv rac{\Delta m^2_{12}}{\Delta m^2_{23}} \sim 0.03$ for best fit values

• Neutrino factory ν from muon decay

$$\begin{array}{ccc} \mu^- \to e^- & \nu_{\mu} & \bar{\nu}_e \\ & \bar{\nu}_e \to \bar{\nu}_{\mu} \to \mu^+ \\ & \nu_{\mu} \to \nu_{\mu} \to \mu^- \end{array} \\ \\ \frac{d\Phi^{\text{lab}}}{dSdy}\Big|_{\theta \simeq 0} \simeq \frac{N_{\mu}}{\pi L^2} 12\gamma^2 y^2 (1-y) \quad y = \frac{E_{\nu}}{E_{\mu}} \end{array}$$

• β -beams from boosted heavy ions decays

$${}^{6}He^{++} \rightarrow {}^{6}_{3}Li^{+++}e^{-} \quad \bar{\nu}_{e} \\ \bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu} \rightarrow \mu^{+} \\ \frac{d\Phi^{\text{lab}}}{dSdy}\Big|_{\theta \simeq 0} \simeq \frac{N_{\beta}}{\pi L^{2}} \frac{\gamma^{2}}{g(y_{e})} y^{2} (1-y) \sqrt{(1-y)^{2} - y_{e}^{2}} \\ y = \frac{E_{\nu}}{2\gamma E_{0}}, y_{e} = m_{e}/E_{0}$$

Optimization of $\langle E_{\nu} \rangle$, L (with $\langle E_{\nu} \rangle / L \sim \Delta m_{atmos}^2$)

Complex problem because of contradicting requirements: maximize intensity, minimize backgrounds, useful spectral information, measure the golden and silver channels, have sizeable matter effects,...

Constraint:

Feasibility: machine, baseline

Neutrino Factory

Standard setup: L = 3000 km, $E_{\mu} = 50$ GeV, 40 Kton magnetized iron calorimeter

Great physics potential: sensitive to $\sin^2 \theta_{13} \leq 10^{-4}$, sensitivity to $sign(\Delta m_{23}^2)$ in a large part of parameter space, $\mathcal{O}(1\%)$ precision in atmospheric parameters!

Sensitivity to CP violation compromised by degeneracies

Three extra handles:

- 1. Combination with a very long baseline
- 2. Combination with associated superbeam, SPL
- 3. Measure silver channel at L = 730 km

β -beam

The standard setup (talk by M. Lindroos): feasible today!

@ FREJUS

2.9 10^{18} ⁶He, $\gamma(^{6}$ He) = 65 1.1 10^{18} Ne, $\gamma(^{18}$ Ne) = 100,

Bouchez, Lindroos, Mezzetto hep-ex/0310059 Even though the fluxes are not so different there are four big limitations with respect to the Neutrino Factory:

	eta-beam		Nufact	
Intensity	small $\sigma_{ u,ar{ u}}$	\leftarrow	large $\sigma_{ u,ar{ u}}$	\uparrow
Systematics	$\delta\sigma_{ u,ar{ u}}$ large	\rightarrow	$\delta\sigma_{ u,ar{ u}}$ small	\uparrow
Degeneracies correlations	$E_{ u}$ resolution \oplus SPL	\rightarrow 2	Silver channel ⊕ SPL	$\uparrow \\ \uparrow$
u spectrum	no matter eff.	\rightarrow	large matter eff.	\uparrow

Higher $\gamma \beta$ -beam ?

Higher energies can be achieved with existing CERN accelerators: LHC ! In principle:

> $\gamma_{max}(^{6}He) = 2488.08$ $\gamma_{max}(^{18}Ne) = 4158.19$

In practice: a feasability study is required

- Unavoidable loses when injecting in the LHC can be compensated by a different acceleration scheme (e.g. atmospheric background is much smaller and longer or more bunches are possible)
- Complexity of the decay ring increases
- Interference with LHC programme
- An alternative to LHC could be a refurbished SPS with superconducting magnets

A β -beam will not happen tomorrow and there is time !!

Major improvement in the physics potential !

J.Burguet-Castell, D. Casper, J.J. Gómez-Cadenas, P.H., F.Sánchez, hep-ph/0312068

Comparison of three setups:

γ	L(km)	$ar{ u}_e$ CC (KTon y)	$ u_e \ CC \ (KTon \ y) $	$\langle E_{\nu} \rangle (GeV)$
60/100	130	4.7	32.8	0.23/0.37
350/580	730	57.5	224.7	1.35/2.18
1500/2500	3000	282.7	993.1	5.80/9.39

Sensitivity to θ_{13}, δ

Setups I, II: 400 Kton water Cerenkov, Setup III: 40 Kton tracking calorimeter

- Higher intensity
- Energy resolution reduces correlations and degeneracies

Sensitivity to $\theta_{13} \neq 0$

Sensitivity to the sign(Δm_{23}^2)

In Setup I, matter effects are negligible, they are sizeable in Setup II and quite large in Setup III

The neutrino mass spectrum can be measured in a large region of parameter space

Highest $\gamma \beta$ -beam ($\gamma > 1500$) \oplus instrumented surface detector (15 m× 15 m) at730km (CERN-Gran Sasso)Terranova, Marota, Migliozzi, Spinetti, hep-ph/0405081

- $\langle E_{\nu} \rangle / L > \Delta m_{atmos}^2$ (off-peak): Signal $\sim \sigma \times \Phi \times P_{\nu_e \nu_{\mu}} \sim \mathcal{O}(E_{\nu})$
- Massive detector for μ from the rock: Eff. mass $\sim \mu$ range $\sim E_{\mu}$

Sensitivity to δ and matter effects are compromised by the off-peak configuration, but impressive sensitivity to θ_{13}

Conclusions

- The flavour lepton sector of the SM that we are starting to reveal might give us some clues at to what lies beyond
- ν with their tiny masses are no longer good candidates for dark matter but they are to visible matter: they could explain the matter/antimatter asymmetry in the Universe
- A lot has been learned in recent years thanks to an ingenious experimental effort
- New discoveries in this field are likely with more precise neutrino oscillation experiments
- There are several very promising possibilities: superbeams, Neutrino Factories, β -beams which might differ in their optimal baselines, energies (the most physics-ambitious roadmap is still to be clarified)...but they all require

The rising star of ν physics

