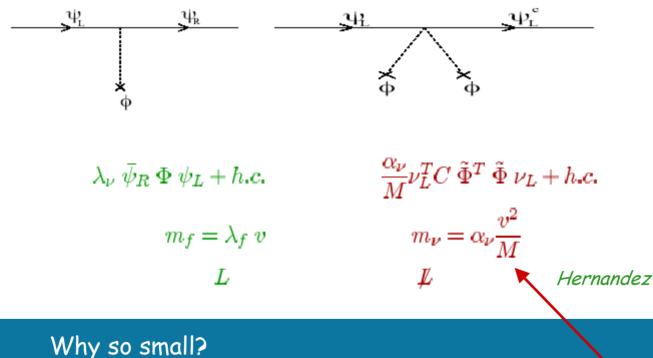
Particle Physics aspects of a MW machine


Long-range programme in neutrino physics: superbeam, β beam, neutrino factory
Complementary programme in μ physics: rare μ decays, μ properties, μ colliders?
Next-generation facility for nuclear physics also tests of SM, nuclear astrophysics
(next talk)

•Synergy with CERN programme: LHC, CNGS v, ISOLDE, heavy ions, β beam (next talk + J.Ellis talk)

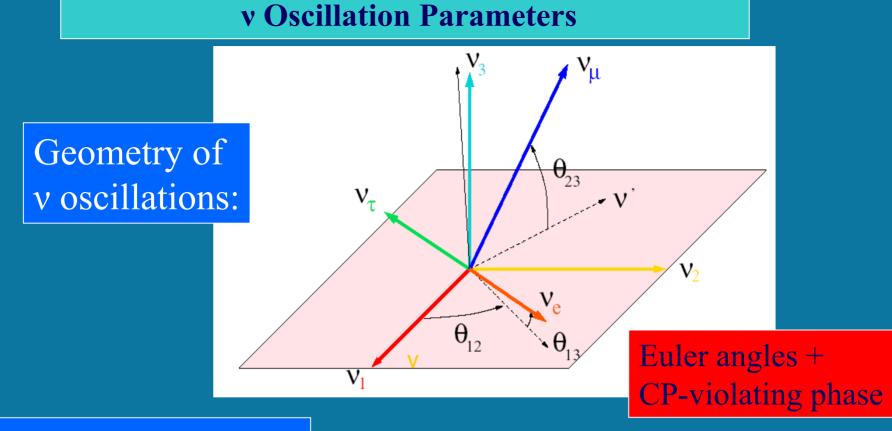
M.Spiro

See also talks by Migliozzi and Ceccucci for SBL and higher energy options

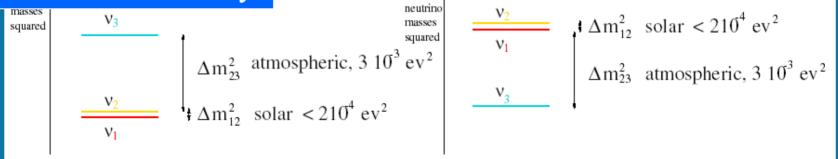
The primary Physics motivation: Neutrino masses and mixings

Why mixing angles so large? Possible connection with GUT theories at high mass M and with Lepto & Baryo-genesis

The homework


After the next generation of neutrino experiments we will probably be far from having the complete picture:

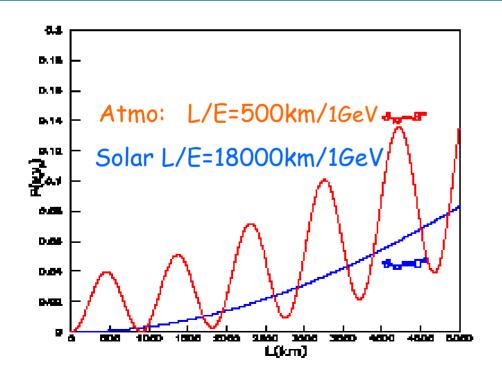
- 1. Measure better $(\Delta m_{23}^2, \theta_{23})$ and $(\Delta m_{12}^2, \theta_{12})$ $\theta_{23} = \pi/4$ fundamental symmetry ?
- 2. Establish 3 family mixing: θ_{13} , δ
- 3. Establish if CP violation occurs: ie. $\sin \delta \neq 0$
- 4. Find the correct spectrum: ie. $\Delta m^2_{atmos} > {\rm or} < 0$


- 5. Establish Majorananess and phases α_1 , α_2
- 6. Find absolute ν mass scale \leftrightarrow new physics scale

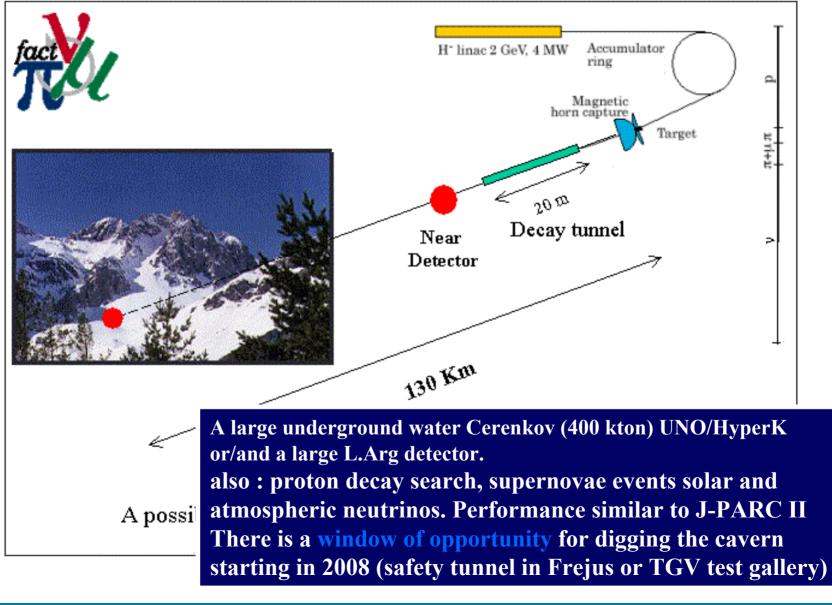
Precision ν osc. experiments $@\langle E_{\nu} \rangle / L \sim \Delta m_{atmos}^2$

End-point of tritium β -decay Rare \not{L} violating decays: $0\nu\beta\beta$ decay

Unknown mass hierarchy:

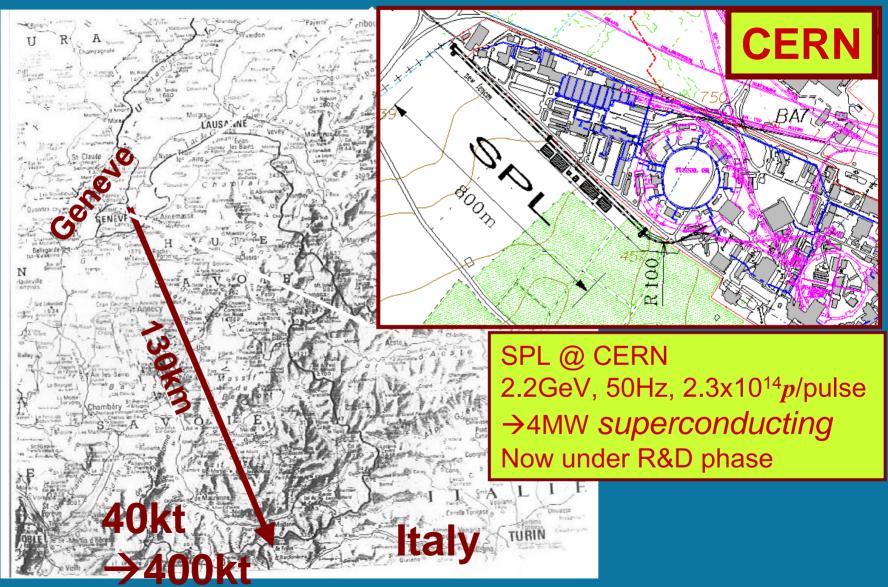


Neutrino Oscillations

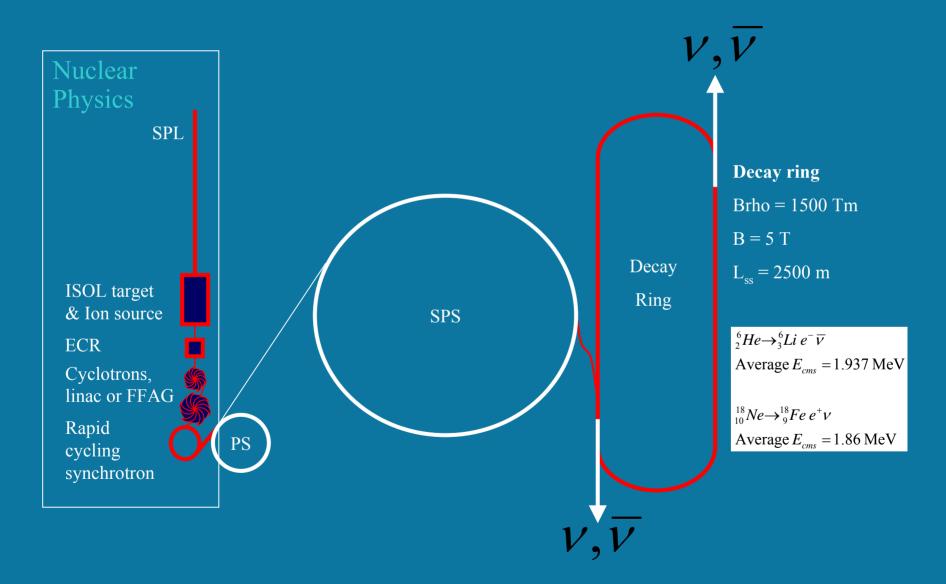

$$P_{\nu e \nu \mu (\bar{\nu} e \bar{\nu} \mu)} = \frac{c_{23}^2 \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta_{12}L}{2}\right)}{+s_{23}^2 \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta_{23}L}{2}\right)} \\ + \bar{J} \cos \left(\pm \delta - \frac{\Delta_{23}L}{2}\right) \frac{\Delta_{12}L}{2} \sin \left(\frac{\Delta_{23}L}{2}\right)$$

Solar

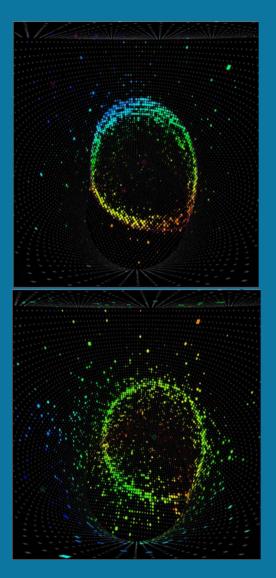
Atmospheric Interference, responsible for CP, T violation



Michel Spiro


Michel Spiro

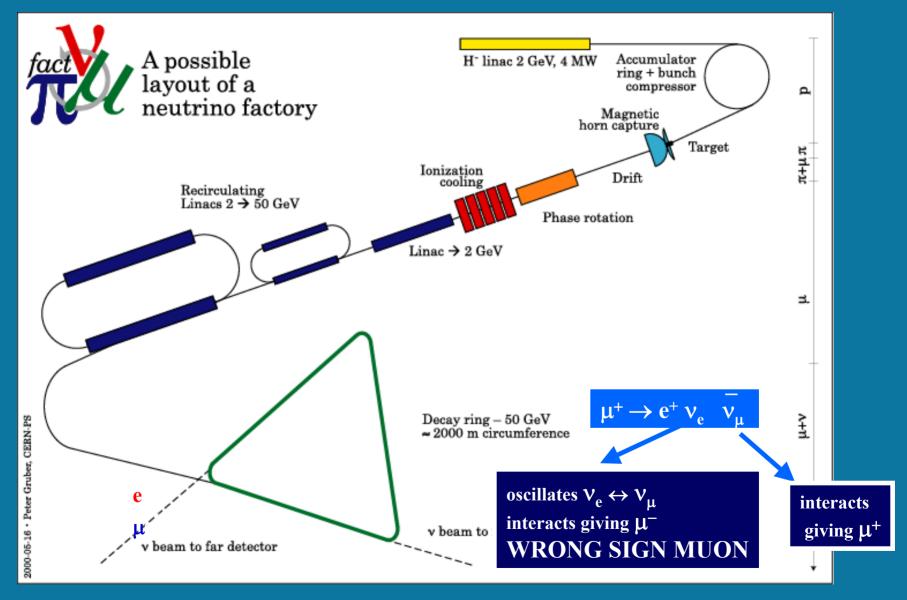
Europe: SPL→Frejus



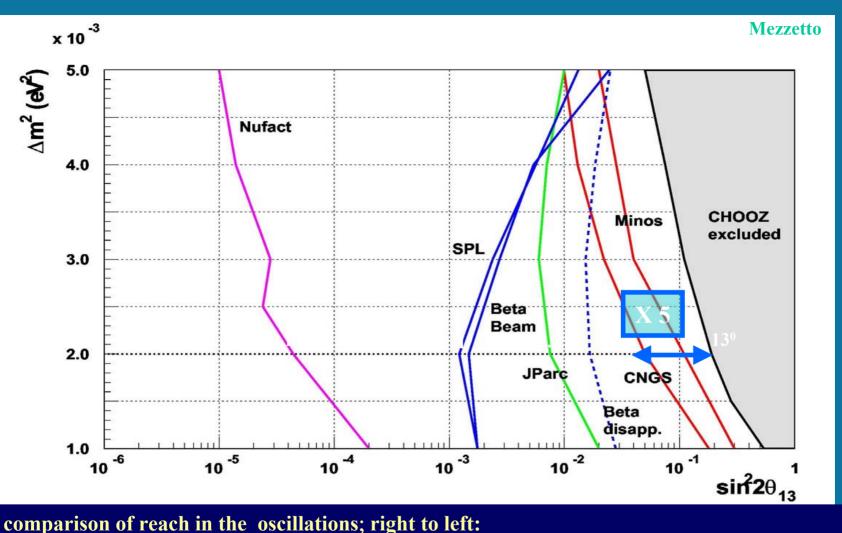
Michel Spiro

CERN: β-beam baseline scenario

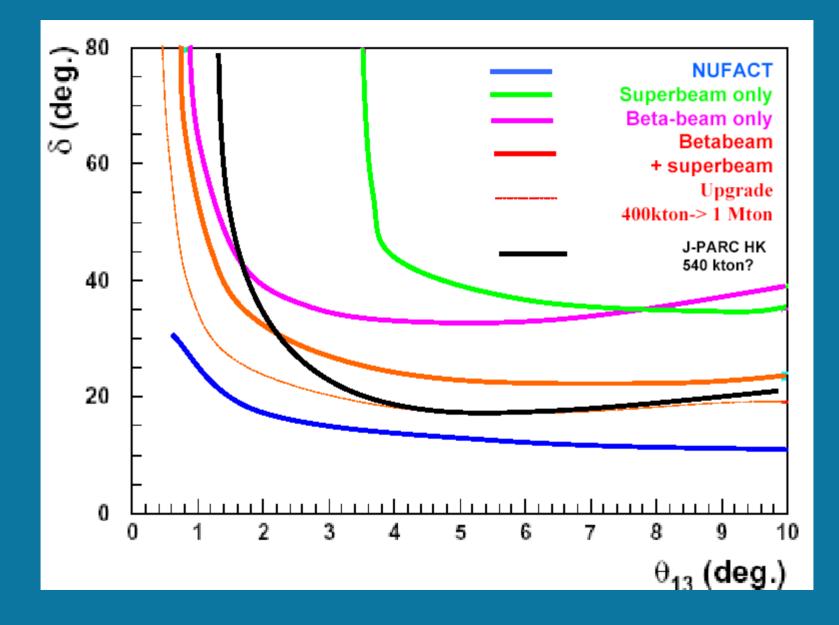
Combination of beta beam with low energy super beam


Michel Spiro

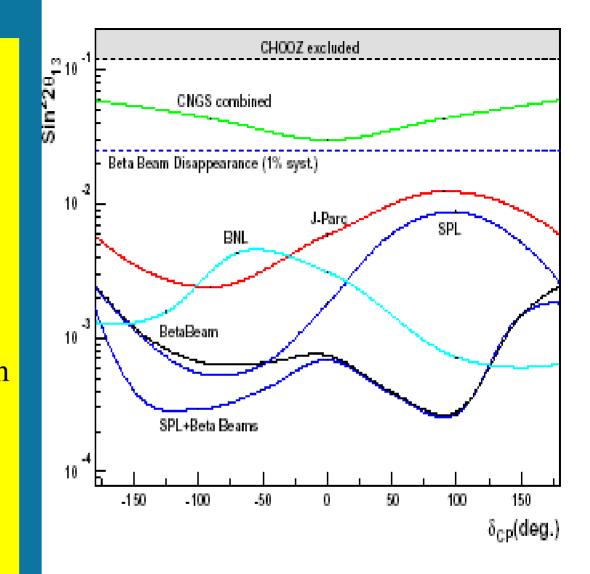
Unique to CERN- based scenario


combines **CP** and **T** violation tests

$$\begin{split} \nu_{\mathbf{e}} &\rightarrow \nu_{\mu} \quad (\beta+) \quad (\mathbf{T}) \quad \nu_{\mu} \rightarrow \nu_{\mathbf{e}} \ (\pi^{+}) \\ \hline \mathbf{(CP)} \\ \hline \nu_{\mathbf{e}} &\rightarrow \overline{\nu_{\mu}} \quad (\beta-) \quad (\mathbf{T}) \quad \overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}} \ (\pi^{-}) \end{split}$$


-- Neutrino Factory --CERN layout

Where will this get us...



present limit from the CHOOZ experiment, expected sensitivity from the MINOS experiment, CNGS (OPERA+ICARUS) 0.75 MW JHF to super Kamiokande with an off-axis narrow-band beam, Superbeam: 4 MW CERN-SPL to a 400 kton water Cerenkov in Fréjus (J-PARC phase II similar) from a Neutrino Factory with 40 kton large magnetic detector.

The « Venice » 4 phase program for θ_{13} and δ

1) CNGS/MINOS (2005 - 2010)2) JPARC/Reactor(?) (2008-2013)3) Superbeam/betabeam or NUMI off axis or 4MW JPARC (2014-)4) Neutrino factory (>2020)

A MW machine is central

Michel Spiro

The Neutrino Road Map

Experiments to find θ_{13} :

 search for v_µ→v_e in conventional v_µ beam (MINOS, ICARUS/OPERA) ==> 2005-2010
 limitations: NC π⁰ background, intrinsic v_e component in beam
 Off-axis beam (JParc-SK, off axis NUMI, off axis CNGS) (~2008-2013) or reactor experiments
 Low Energy Superbeam (BNL → Homestake, SPL → Fréjus or J-Parc-HyperK) (~2014-2020)

Precision experiments to find CP violation -- or to search further if θ_{13} is too small

beta-beam ⁶He⁺⁺ → ⁶Li⁺⁺⁺ v_e e⁻ and ¹⁸Ne¹⁰⁺ → ¹⁸F ⁹⁺ v_e e⁺ (also 2014-2020?)
 Neutrino factory with muon storage ring (>2020) μ⁺ → e⁺ v_e v_µ and μ⁻ → e⁻ v_e v_µ

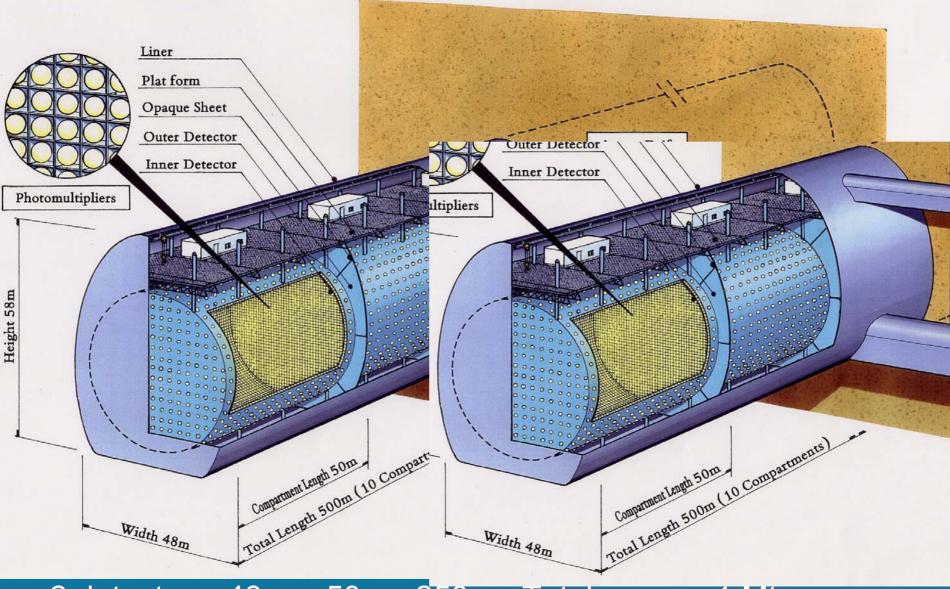
fraction thereof will exist.

UNO Detector Conceptual Design

A Water Cherenkov Detector optimized for:

- Light attenuation length limit
- PMT pressure limit
- Cost (built-in staging)

ECFA/BENE, May. 2004

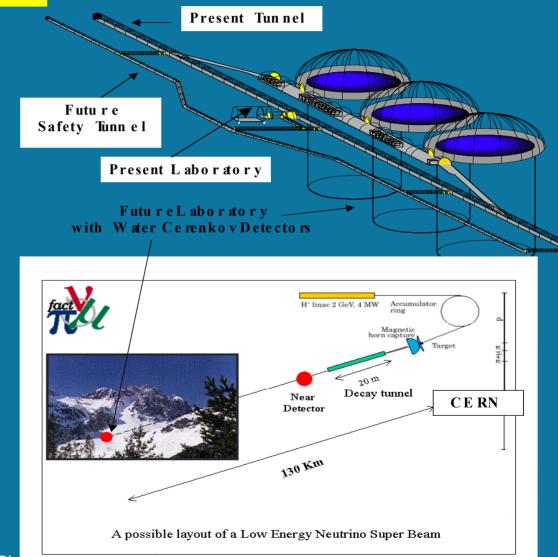

Only optical separation

40%

10%

60x60x60m³x3 Total Vol: 650 kton Fid. Vol: 440 kton (20xSuperK) # of 20" PMTs: 56,000 # of 8" PMTs: 14,900

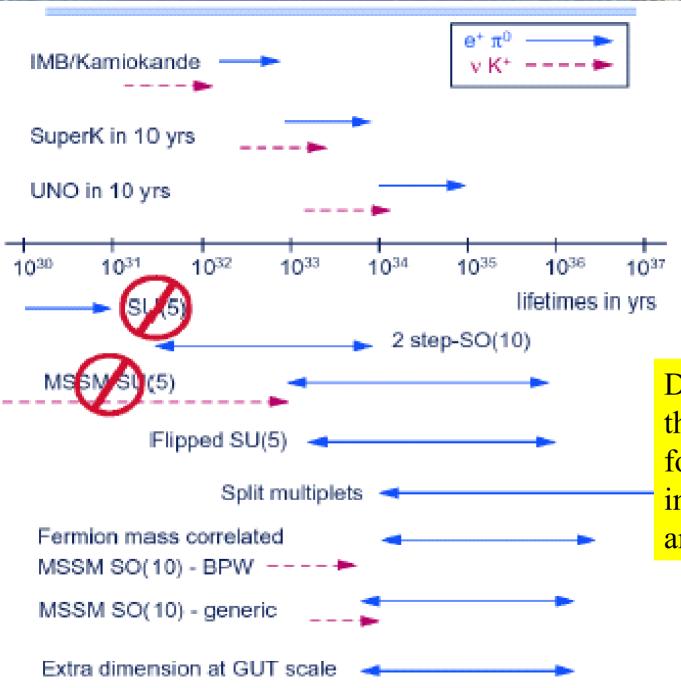
2 Detector Hyper-Kamiokande



2 detectors × 48m × 50m × 250m, Total mass = 1 Mton Michel Spiro Particle Physics at the Megawatt proton source. CERN 27 May 2004

The 'Baseline' European Project: in the Franco-Italian tunnel Fréjus

Components of the Project


MoU CEA/IN2P3/INFN

Main advantages: 1) Large depth (>4800 mwe) 2) Beam at the right distance 3) Easy access, central european position 4) Support from local autorities, governments

Michel Spiro

Particle Ph

Do we need more theoretical effort for really model independent limits and guidance?

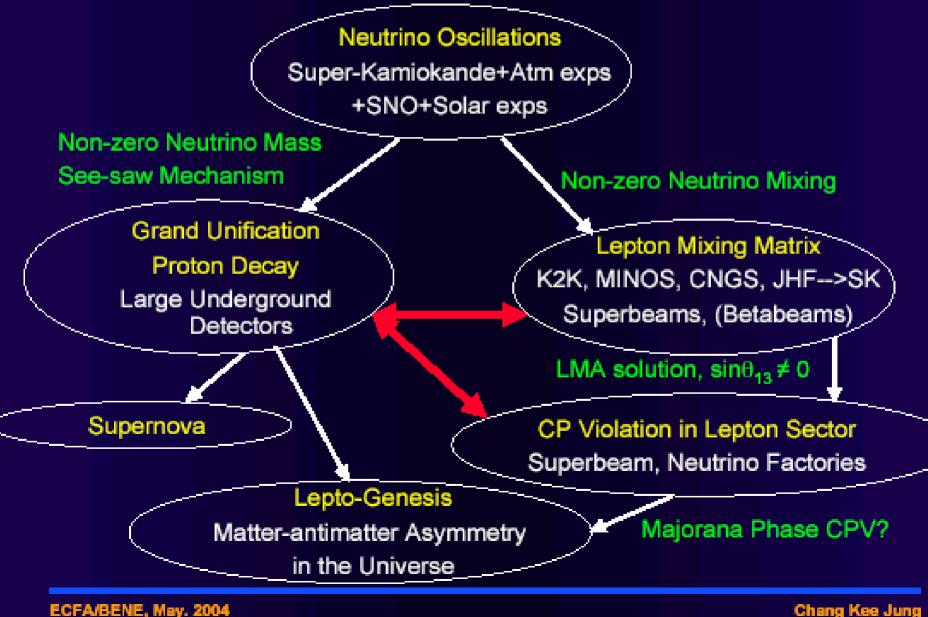
Proton decay

ERN 27 May 2004

Supernova Reach ~ 1 Mpc (local group of galaxies)

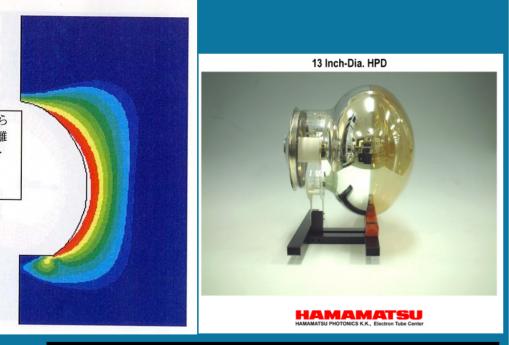
Supernova Rate ~ 1/10 or 15 yrs SK is a factor of 3 in sensibility below models A Megaton detector in a deep site (<4000 mwe) could exclude all models or discover SNR in3-5 years

Supernova


Michel Spiro

Theory Model	SK SRN Rate Limit (Efficiency Corrected)	SK SRN Flux Limit (18 MeV < Ee < 82 MeV)	SK SRN Flux Limit (Full Spectrum)	Predict SRN Flux (Full Spectrum)		
Galaxy evolution (Totani et al., 1996)	3.2 $\frac{\text{events}}{\text{year } 22.5 \text{ kton}}$	$< 1.2 \frac{\overline{v_e}}{cm^2 sec}$	$< 130 \frac{\overline{v_e}}{cm^2 sec}$	44 $\frac{\overline{v_e}}{cm^2 sec}$		
Heavy metal abundance (Kaplinghat et al.,2000)	3.0 $\frac{\text{events}}{\text{year } 22.5 \text{ kton}}$	$< 1.2 \frac{\overline{v_e}}{cm^2 sec}$	< 29 $\frac{\overline{v_e}}{cm^2 sec}$	$< 54 \frac{\overline{v_e}}{cm^2 sec}$		
Constant supernova rate (Totani et al., 1996)	3.4 $\frac{\text{events}}{\text{year } 22.5 \text{ kton}}$	< 1.2 $\frac{\overline{v_e}}{cm^2 sec}$	$< 20 \frac{\overline{v_e}}{cm^2 sec}$	$52 \frac{\overline{v_e}}{cm^2 sec}$		
LMA neutrino oscillation (Ando et al., 2002)	3.5 $\frac{\text{events}}{\text{year } 22.5 \text{ kton}}$	< 1.2 $\frac{\overline{v_e}}{cm^2 sec}$	$< 31 \frac{\overline{v_e}}{cm^2 sec}$	$11 \frac{\overline{v_e}}{cm^2 sec}$		
M.S. Malek et. al, Phys. Rev. Lett. 90, E-ID 061101 (2003)						

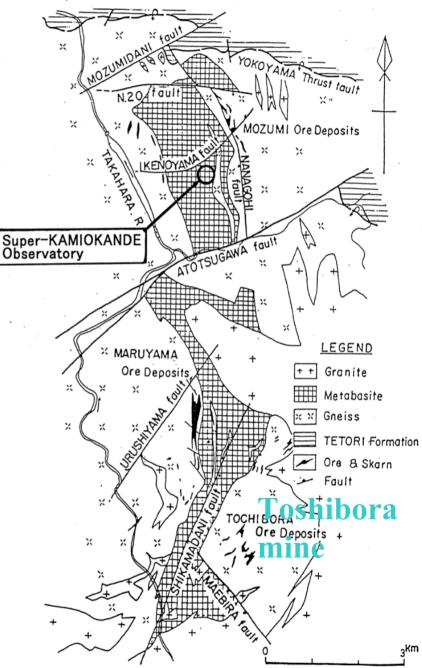
Megaton physics goals


- **#** Proton decay and GUT theories
- ***** Neutrino parameters
 - 🔼 superbeam/betabeam
 - 🖸 atmospheric/solar
- **#** Astroparticle
 - Supernova explosion and relic
 - Other astrophysical sources
- 🔀 Synergy
 - accelerator and astroparticle physics
 - and nuclear physics (EURISOL)

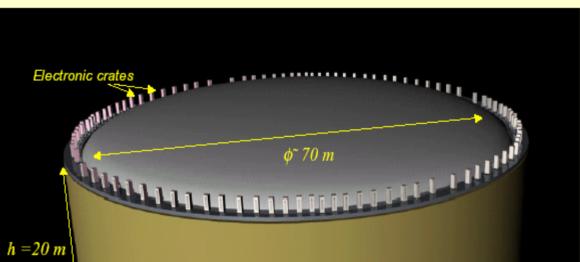
998 Neutrino Revolution and Physics Goals for NNN Experiments

Chang Kee Jung

2 critical elements for the megaton detectors:1) Excavation2) cost of photodetectors



Design studies should include these two topics


Michel Spiro

Particle Physics at the

GEOLOGY AND ORE DEPOSITS OF KAMIOKA MINE

100 kton liquid Argon TPC detector

Dari	100	insu		ion	
100	1.4	10.0010	103.0		

Par

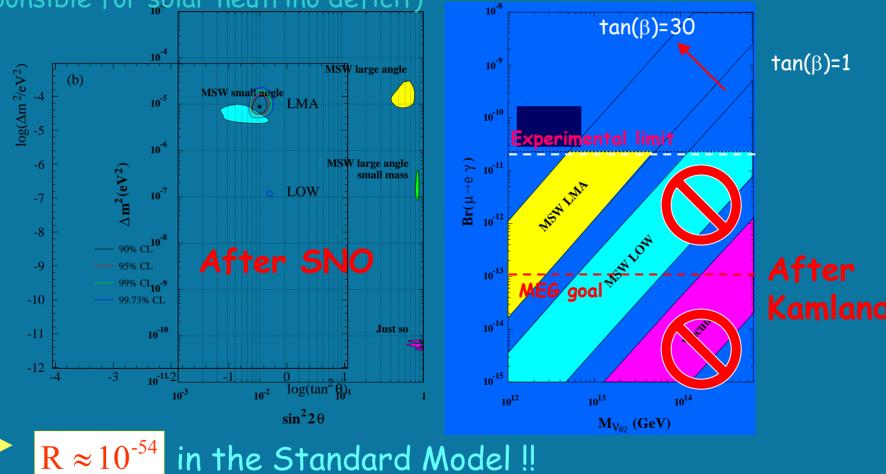
Experiments for CP violation: a giant liquid Argon s A.Rubbia, Proc. II Int. Workshop on Neutrinos in

Michel Spiro

	Water Cerenkov (UNO)	Liquid Argon TPC			
Total mass	650 kton	100 kton			
Cost	~ 500 M\$	Under evaluation			
$p \rightarrow e \: \pi^0$ in 10 years	10^{35} years ϵ = 43%, \degree 30 BG events	$3x10^{34}$ years ε = 45%, 1 BG event			
$p \rightarrow v K$ in 10 years	2x10 ³⁴ years ε = 8.6%, ^{°°} 57 BG events	8×10^{34} years ε = 97%, 1 BG event			
$p \rightarrow \mu \pi K$ in 10 years	No	8×10^{34} years ε = 98%, 1 BG event			
SN cool off @ 10 kpc	194000 (mostly $v_e p \rightarrow e^+ n$)	38500 (all flavors) (64000 if NH-L mixing)			
SN in Andromeda	40 events	7 (12 if NH-L mixing)			
SN burst @ 10 kpc	~ 330 ν-e elastic scattering	380 v_e CC (flavor sensitive)			
SN relic	Yes	Yes			
Atmospheric neutrinos	60000 events/year 10000 events/yea				
Solar neutrinos	E _e > 7 MeV (central module)	324000 events/year E _e > 5 MeV			

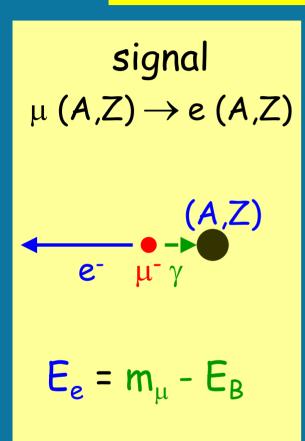
An example to follow

JPARC start of construction


JAERI side

KEK side

rare muon decays -- connection with v-oscillations


Additional contribution to slepton mixing from V_{21} (the matrix element responsible for solar neutrino deficit)

J. Hisano, N. Nomura, Phys. Rev. D59 (1999)

Michel Spiro

$\mu^{-} \rightarrow e^{-}$ conversion

main backgrounds

MIO $\mu(A,Z) \rightarrow e \vee \vee (A,Z)$

RPC $\pi (A,Z) \rightarrow \gamma (A,Z-1)$ Beam related background

Requires a BUNCHED beam

Michel Spiro

Illustration of the beam needs for the different kinds of experiments

Experiment	q_{μ}	$\int I_{\mu}dt$	I_0/I_m	δT [ns]	ΔT [μ s]	<i>Е</i> µ [MeV]	$\Delta p_{\mu}/p_{\mu}$ [%]
$\mu^- N \rightarrow e^- N^{\dagger}$		10^{21}	$< 10^{-10}$	≤ 100	≥ 1	< 20	< 10
$\mu^- N \rightarrow e^- N^{\ddagger}$	_	10^{20}	n/a	n/a	n/a	< 20	< 10
$\mu \rightarrow e\gamma$	+	10^{17}	n/a	n/a	n/a	14	< 10
$\mu \rightarrow eee$	+	10^{17}	n/a	n/a	n/a	14	< 10
$\mu^+e^- \rightarrow \mu^-e^+$	+	10^{16}	$< 10^{-4}$	< 1000	≥ 20	14	12
τ_{μ}	+	10^{14}	$< 10^{-4}$	< 100	≥ 20	4	110
transvers. polariz.	+	10^{16}	$< 10^{-4}$	< 0.5	> 0.02	30-40	13
$g_{\mu} - 2$	\pm	10^{15}	$< 10^{-7}$	≤ 50	$\geq 10^{3}$	3100	10^{-2}
edm_{μ}	\pm	10 ¹⁶	$< 10^{-6}$	≤ 50	$\ge 10^{3}$	≤ 1000	$\leq 10^{-3}$

Michel Spiro

Conclusions

Neutrino physics (masses, mixings and CP violation) meet proton decay physics at GUT scales

This physics is just as important as the exploration of the electroweak scale.

Megawatt beams coupled with Megaton detectors are the natural aim at the 2015 horizon.

Conclusions (Euro-centered)

Unique opportunities exist in Europe: 1. Unique LHC upgraded+ Superbeam + betabeam + rare μ decays synergies *at CERN*

(accelerator complex + Isolde/Eurisol Expertise and physics)

2. The Superconducting proton Linac option has more potential for ultimate intensities

3. Deep underground megaton laboratory opportunities in Europe at adequate distance

(Fréjus...)

4. these are first steps towards Neutrino Factories and muon colliders.