The nuclear liquid gas phase transition

Francesca Gulminelli

LPC Caen and Institut Universitaire de France

- The status of the art
- The isospin degree of freedom the properties of the EOS the observables of the transition
- Conclusions

interdisciplinary connections

CERN-MW workshop

Abnormal fluctuations

The caloric curve depends on the transformation

Fluctuations are unique

The phase transition with exotic beams

Changing

- the isospin content (N/Z)
- the Coulomb properties of the fragmenting source: an extra dimension

Equation of state at T=0: symmetry energy

CERN-MW workshop

Equation of state at T>0: phase transition

Phase transition: observables

11

Muller Serot PRC 1995

Coulomb effects on the phase transition

Statistical Multifragmentation Model

From nuclear matter to heavily charged nuclei, the first order phase transition is expected to become a cross over

conclusions

• The physics of hot nuclei

- a unique laboratory for the thermodynamics of open, finite, off-equilibrium systems
- a quantitative nuclear metrology

WCI 2004

E/A (A.MeV)

world-wide review of the field of dynamics and thermodynamics

with nucleonic degrees of freedom http://cyclotron.tamu.edu/sjygroup/wci2004/

• What do we need

• 4π mass and charge detection (AZ4 π collaboration -

FAZIA concept of the EURISOL report)

• 20-50 A.MeV radioactive beams