U.S. Plans for High Power Proton Drivers

Steve Holmes Fermilab

Workshop on Physics with a Multi-MW Proton Source CERN May 25, 2004

Outline

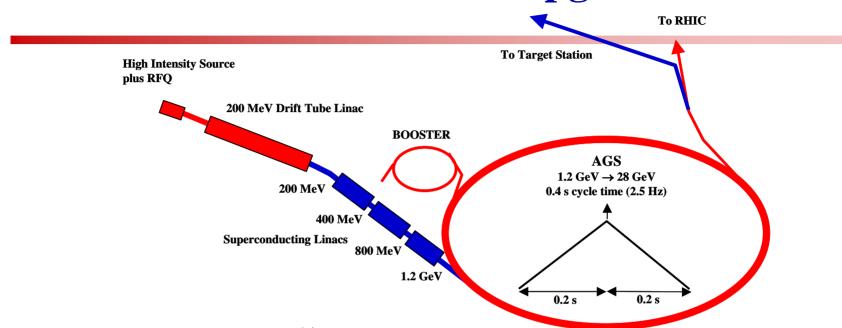
- Motivations
- Performance Goals
- Conceptual Descriptions
- Summary

High Power Proton Drivers Motivations

- John Ellis has described the broad range of opportunities enabled by very high intensity proton machines, and Shoji Nagamiya has described the J-PARC facility aimed at capitalizing on some of these opportunities.
- Within the U.S. we have SNS under construction, and both Fermilab and BNL in the initial stages of developing concepts for 1-2 MW proton sources. From the point of view of Fermilab and BNL, with traditions in high energy and nuclear physics, the primary motivations are:
 - Neutrino physics
 - > Super beams
 - Driver for a muon storage ring/neutrino factory
 - Rare decays (kaons, muons)
 - Pulsed neutrons
 - Injector for a very large hadron collider

• Similar ideas are being developed in Europe (Roland G. & Chris P.)

High Power Proton Drivers Fermilab and Brookhaven


- Fermilab and Brookhaven concepts have several elements in common:
 - Increase the repetition rate of the existing machine (MI or AGS)
 - Decrease the fill time of the existing machine by using a (sc) linac
 - Increase the injected beam intensity by using a linac (or synchrotron)
 - Rely on previously developed SCRF technologies
- Both conceive of upgrade paths that could go another factor of 2-4
- The BNL concept features a 1.2 GeV superconducting linac as the injector into the (upgraded) AGS
- Fermilab has two implementations under evaluation, each with capability to inject into the Main Injector and to provide stand-alone 8 GeV beams:
 - 8 GeV synchrotron (with 600 MeV linac injector)
 - 8 GeV superconducting linac

High Power Proton Drivers

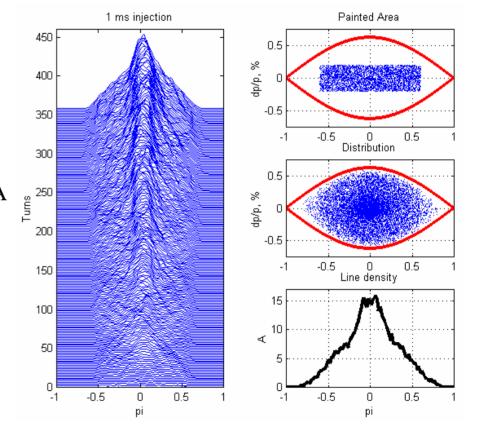
Performance Goals

		Fermilab Options			Brookhaven		
	Present	Synchrotron	Linac	F	Present	AGS Upgrade	<u> </u>
Linac							
Kinetic Energy	400	600	8000		200	1200	MeV
Peak Current	40	50	25		40	30	mA
Pulse Length	90	90	1000		60	720	μsec
Protons/pulse	2.3E+13	2.8E+13	1.6E+14	1	.5E+13	1.4E+14	
Repetition Rate	15	15	10		15	2.5	Hz
Average Beam Power	0.02	0.04	2.00		0.007	0.06	MW
Booster							
Kinetic Energy (Out)	8	8			1.5		GeV
Protons per Pulse	5.0E+12	2.5E+13		1	.5E+13		
Repetition Rate	7.5	15			6.7		Hz
Protons/hour	1.4E+17	1.4E+18		3	3.6E+17		
Average Beam Power	0.05	0.5			0.02		MW
Main Injector				AGS			
Kinetic Energy (Out)	120	120	120		24	28	GeV
Protons per Pulse	3.0E+13	1.5E+14	1.6E+14	6	6.0E+13	9.0E+13	
Repetition Rate	0.54	0.65	0.67		0.33	2.50	Hz
Protons/hour	5.8E+16	3.5E+17	3.8E+17	7	7.2E+16	8.1E+17	
Average Beam Power	0.3	1.9	2.0		0.1	1.0	MW

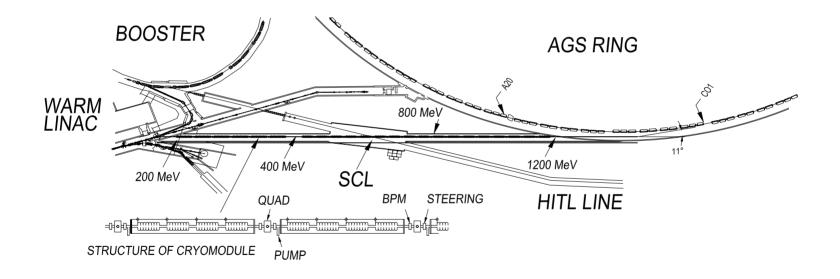
Brookhaven AGS Upgrade

- Direct injection of ~ 1×10^{14} protons via a 1.2 GeV sc linac extension
 - low beam loss at injection; high repetition rate possible
 - further upgrade to 1.5 GeV and 2×10^{14} protons per pulse possible (x 2)
- 2.5 Hz AGS repetition rate
 - triple existing main magnet power supply and magnet current feeds
 - double rf power and accelerating gradient
 - further upgrade to 5 Hz possible (x 2)

Brookhaven AGS Upgrade

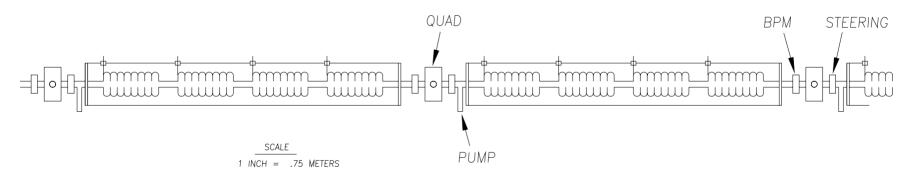

Parameters

	Present	1 MW	2 MW
Total beam power [MW]	0.14	1.00	2.00
Injector Energy [GeV]	1.5	1.2	1.5
Beam energy [GeV]	24	28	28
Average current [µA]	6	36	72
Cycle time [s]	2	0.4	0.4
No. of protons per fill	0.7×10^{14}	0.9×10^{14}	1.8×10^{14}
Average circulating current [A]	4.2	5.0	10
No. of bunches at extraction	6	24	24
No. of protons per bunch	1×10^{13}	0.4×10^{13}	0.8×10^{13}
No. of protons per 10 ⁷ sec.	3.5×10^{20}	23×10^{20}	46×10^{20}


Brookhaven AGS Upgrade AGS injection Simulation

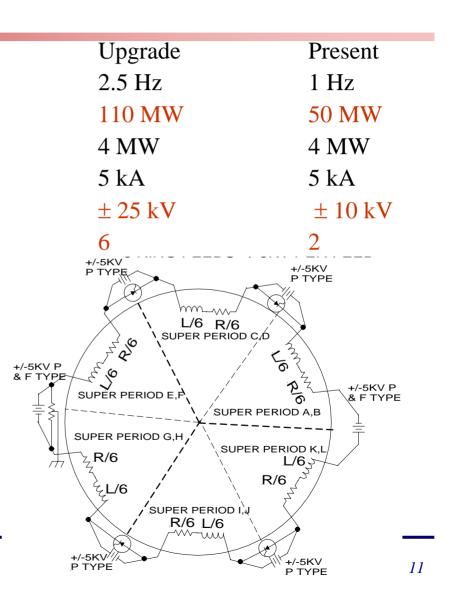
Injection parameters:

Injection turns	360
Repetition rate	2.5 Hz
Pulse length	1.08 ms
Chopping rate	0.65
Linac average/peak current	20 / 30 mA
Momentum spread	±0.15 %
Inj. beam emittance (95 %)	12 π µm
RF voltage	450 kV
Bunch length	85 ns
Longitudinal emittance	1.2 eVs
Momentum spread	±0.48 %
Circ. beam emittance (95 %) 100 π µm



Brookhaven AGS Upgrade Location of the 1.2 GeV SCL

Brookhaven AGS Upgrade 1.2 GeV Superconducting Linac


Beam energy	$0.2 \rightarrow 0.4 \text{ GeV}$	$0.4 \rightarrow 0.8 \text{ GeV}$	$0.8 \rightarrow 1.2 \text{ GeV}$
Rf frequency	805 MHz	1610 MHz	1610 MHz
Accelerating gradient	10.8 MeV/m	23.5 MeV/m	23.5 MeV/m
Length	37.8 m	41.4 m	38.3 m
Beam power, linac exit	17 kW	34 kW	50 kW

Based on SNS Experiences

New AGS Main Magnet Power Supply

- Repetition rate
- Peak power
- Average power
- Peak current
- Peak total voltage
- Number of power converters / feeds

S. Holmes, Mulit-MW Workshop, May 2004

AGS RF System Upgrade

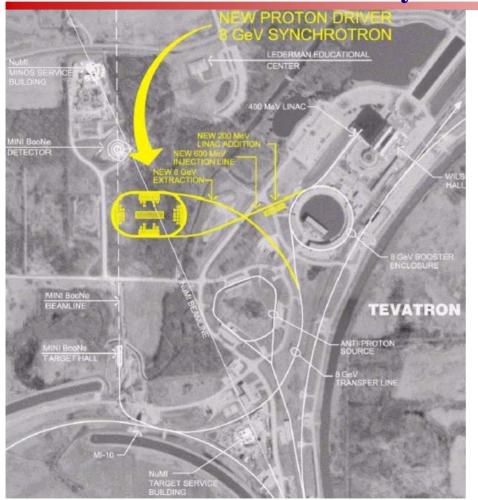
Use present cavities with upgraded power supplies

<u>Upgrade</u>	Present
0.8 MV	0.4 MV
20 KV	10 KV
24	6 (12)
9 MHz	3 (4.5) MHz
2 MW	0.75 MW
18 mT	18 mT
2	1
	0.8 MV 20 KV 24 9 MHz 2 MW

- Original Concept: 8 GeV Synchrotron (May 2002, Fermilab-TM-2169)
 - Long term proton demand seen as exceeding what reasonable upgrades of the existing Linac and Booster can support
 - Basic plan: replace the existing Booster with a new large aperture 8 GeV Booster (also cycling at 15 Hz)

> Takes full advantage of the large aperture of the Main Injector

➤ Goal: 5 times protons/cycle in the MI $(3 \times 10^{13} \rightarrow 1.5 \times 10^{14})$

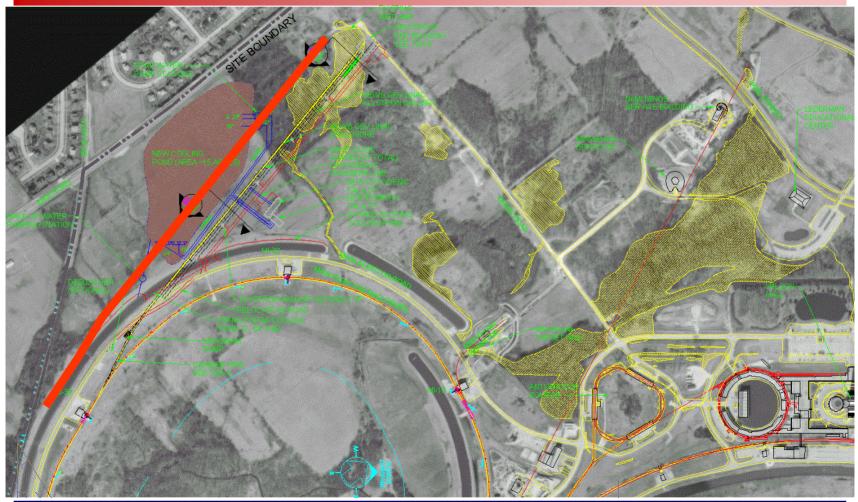

- Reduce the 120 GeV MI cycle time 20% from 1.87 sec to 1.53 sec

> Requires substantial upgrades to the Main Injector RF system

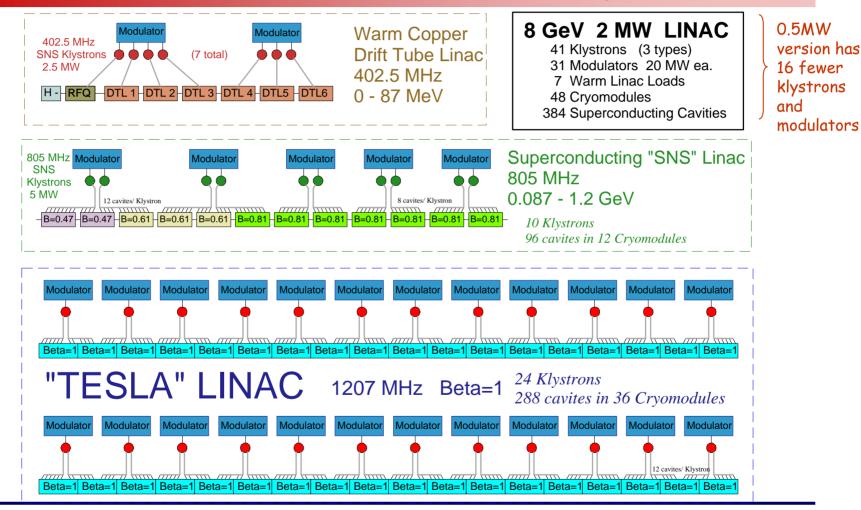
- The plan also includes improvements to the existing linac (new RFQ and 10 MeV tank) and increasing the linac energy $(400 \rightarrow 600 \text{ MeV})$

Net result ⇒ increase the Main Injector beam power at 120 GeV by a factor of 6 (from 0.3 MW to 1.9 MW)

Fermilab Proton Driver 8 GeV Synchrotron



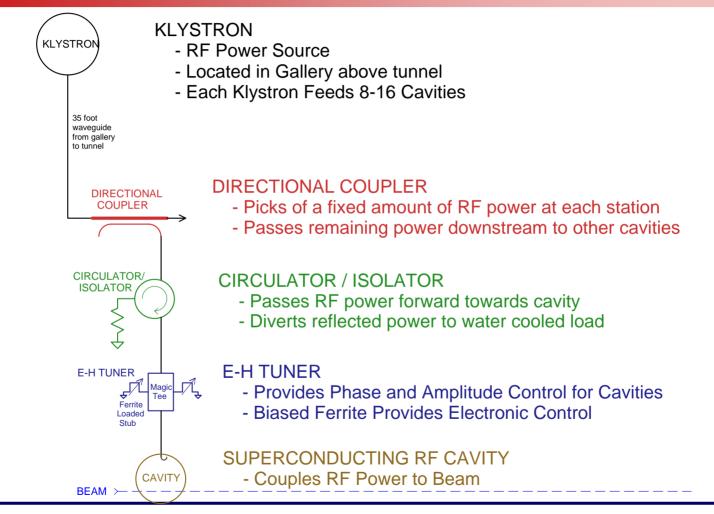
- Synchrotron technology well understood
- Large aperture (100×150mm²) magnets
- Modern collimation system to limit equipment activation
- Provides 0.5 MW beam power at 8 GeV; 1.9 MW at 120 GeV assuming upgrade of Main Injector ramp rate by 30%
- Likely less expensive than an 8 GeV linac


8 GeV Superconducting Linac

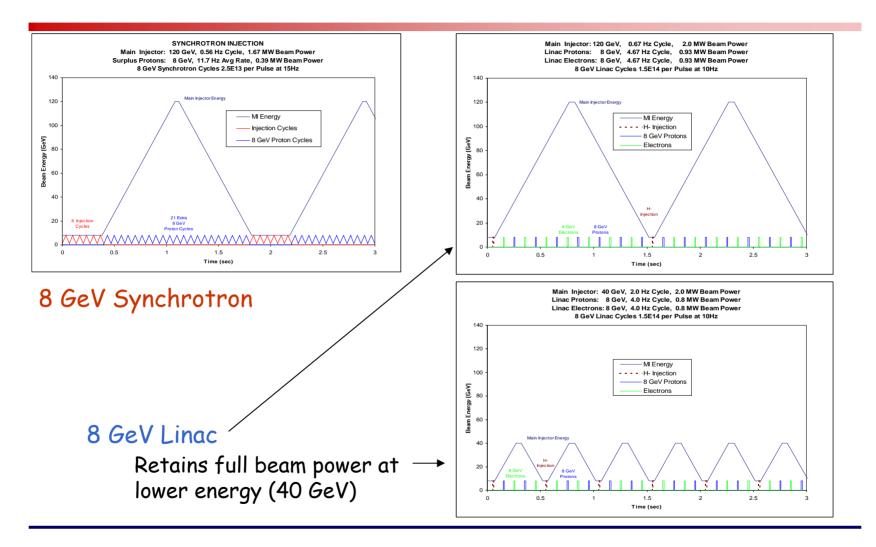
- Basic concept inspired by the observation (by Bill Foster) that \$/GeV for SCRF has fallen dramatically
 - ⇒ Consider a solution in which H⁻ beam is accelerated to 8 GeV in a superconducting linac and injected directly into the Main Injector
- Attractions of a superconducting linac:
 - Many components exist (few parts to design vs. new synchrotron)
 ➢ Copy SNS, RIA, & AccSys Linac up to 1.2 GeV
 ➢ "TESLA" Cryo modules from 1.2 → 8 GeV
 - Smaller emittance than a synchrotron
 - High beam power simultaneously at 8 & 120 GeV
 - ▶ Plus, high beam power (2 MW) over entire 40-120 GeV range
 - Flexibility for the future
- Issues
 - Uncontrolled H⁻ stripping
 - Halo formation and control
 - Cost

Fermilab Proton Driver 8 GeV SC Linac: Possible Site

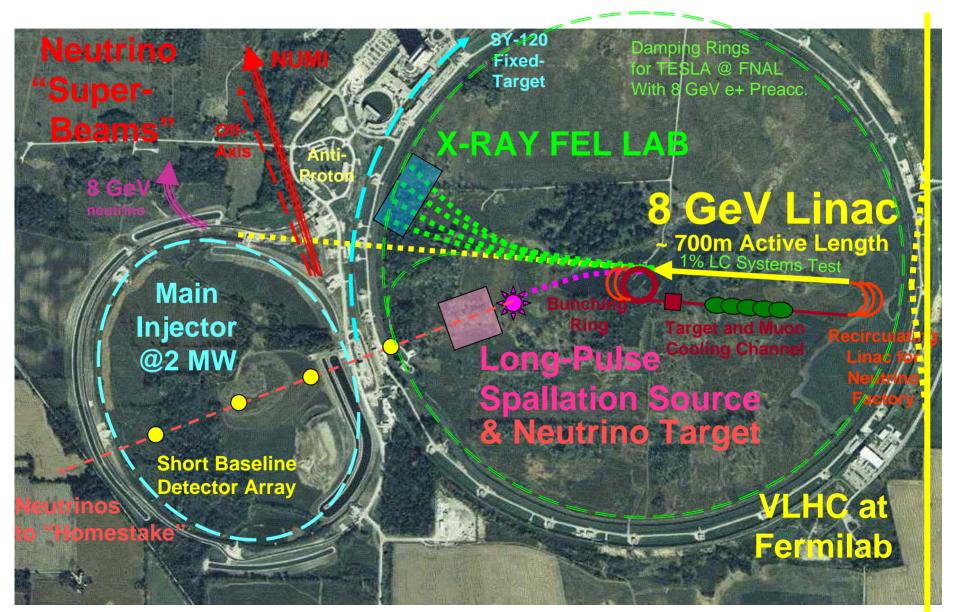
8 GeV SC Linac: RF/Structure Layout


8 GeV SC Linac Parameters

8 GeV LINAC


Energy	GeV	8			
Particle Type	H- Ions, Protons, or Electrons				
Rep. Rate	Hz	10			
Active Length	m	671			
Beam Current	mA	25			
Pulse Length	msec	1			
Beam Intensity	P / pulse	1.5E+14	(can be H-, P, or e-)		
	P/hour	5.4E+18			
Linac Beam Power	MW avg.	2			
	MW peak	200			
MAIN INJECTOR WITH 8 GeV LINAC					
MI Beam Energy	GeV	120			
MI Beam Power	MW	2.0			
MI Cycle Time	Sec	1.5	filling time = 1msec		
MI Protons/cycle	000	1.5E+14	5x design		
MI Protons/hr	P / hr	3.6E+17	ert deelgit		
H-minus Injection	turns	90	SNS = 1060 turns		
MI Beam Current	mA	2250			

S. Holmes, Mulit-MW Workshop, May 2004


8 GeV SC Linac: RF Distribution

Fermilab Proton Driver Main Injector Cycle Times

8 GeV SC Linac: Other possible missions (from the mind of Bill Foster)

Fermilab Proton Driver 8 GeV SC Linac: Frequency Options

- Standardize on SNS /RIA (/FNAL/BNL) (805 MHz)
 - Develop "modified TESLA" 1207.5 MHz cavities
 - Develop Modified Multi-Beam Klystron
 - Develop new spoke resonator family if SCRF

OR?

- Standardize on TESLA (1300 MHz)
 - Develop new family of "TESLA-Compatible" beta<1 cavities
 - Already 3 vendors for main MBK
 - Develop new spoke resonator family if SCRF

⇒It would be nice to standardize to the extent possible among the proton machines that anticipate using SCRF technologies (including SPL)

Conclusions

- Design concepts for Proton Drivers in the 1-2 MW have been developed by both BNL and Fermilab.
- Both are motivated by a variety of physics opportunities, headlined by neutrino physics.
- Both are conducting R&D on critical technical and cost components.
- The Fermilab Long Range Plan identifies a 2 MW proton source as the preferred option in the event a linear collider is either constructed elsewhere, or delayed
 - We are preparing documentation sufficient to support a "statement of mission need", aka Critical Decision 0 within the U.S. Department of Energy project management system.
- BNL is preparing a design study that could serve as the basis of a subsequent proposal.