1954-2004

The High-Intensity Frontier

Physics with a Multi-Megawatt Proton Source

John Ellis, May 25th 2004

... a foretaste

The High-Intensity Frontier

- Exploration and understanding
 Novel phenomena
 Rare processes
 High statistics
- Active option in front-line physics: factories for Z, B, τ/Charm, K, antiproton, anti-Hydrogen
- Megawatt

 new opportunities for nuclear, v, muon, kaon physics

Possible Layout of SPL at CERN

SPL @ CERN Wish List

USER	CERN COMMITMENT *	USERS' WISHES	
	Short term	Medium term [~ asap !]	Long term [beyond 2014]
LHC	Planned beams	Ultimate luminosity	Luminosity upgrades
Fixed Target (COMPASS)	4.3910 ⁵ spills/y ?	6910 ⁵ spills/y	
CNGS	4.5⑨10 ¹⁹ p/year	Upgrade ~ 9 2	
ISOLDE	1.92 µA **	Upgrade ~ 9 5	
Future beams			> 2 GeV / 4 MW
EURISOL			1-2 GeV / 5 MW

Possible Upgrades of LHC

Increase luminosity – but beware of integrated radiation dose

Possible EURISOL Site @ CERN

Nuclear Physics: agenda of HIE-ISOLDE & EURISOL

• The limits of nuclear existence:

```
neutron & proton drip lines,
superheavy elements,
extreme nucleonic matter
```

Nuclear astrophysics:

```
rp-process, r-process
```

Probes of Standard Model:

```
CKM, P, T, CP
```

• Materials science:

```
radioactive spies, curing chemical blindness, positron annihilation studies, applications to biomedicine, etc.
```


Issues in Nuclear Physics

Proton-rich nuclei

nucleonic Cooper pairs S=0S=0n \mathbf{n} p (b) (a) S=1S=0n P p (d) (c)

Neutron-rich nuclei

Tests of CVC hypothesis: Probe Standard Model

Neutrino Physics

- v oscillations first evidence for physics beyond
 - the Standard Model

Sign of Δm^2

• Still unknown parameters:

mixing angle Θ_{13} CP-violating phase δ

- Many other parameters in minimal seesaw model
 - Total of 18: responsible for leptogenesis?
- Some accessible in rare muon processes

v Oscillation Parameters

Status of v Oscillations

v Oscillation Facilities @ CERN

- CNGS: ν beam from SPS: τ production
- Superbeam? intense v beam from SPL
- β beam? signed electron (anti) v beams from heavy ions
- ν factory?
 muon and electron (anti) ν beams from μ decay

Sensitivities of Super & Beams

Schematic Layout of β Beam @ CERN

Sensitivities of Super & Beams

Sensitivities of Super & Beams

Schematic Layout of v Factory @ CERN

Neutrino Factory Sensitivity: CP-Violating Phase δ

→ Pilar Hernandez

Neutrinos as Probes of Standard Model

- Enormous interaction rates in nearby detector
- Quark and antiquark densities
 Polarized and unpolarized
 e.g., strange quarks
- Extraction of α_s , $\sin^2 \square_W$
- Charm production
- Polarization of Λ baryons
 also probe of strange polarization

Event Rates in Nearby Detector

Measuring Strange Partons

8.0

Handles on Strange Polarization

Muon Physics

- Megawatt produces many muons
- Rare μ decays

$$\mu \rightarrow e \gamma, \mu \rightarrow eee, \mu A \rightarrow e A$$

Expected in susy seesaw model

Probe unknown parameters in seesaw model

• Dipole moments:

 g_{μ} – 2, electric dipole moment, CPT tests

• Nuclear, condensed-matter physics:

(radioactive) μ-ic atoms, muonium, μ-ic Hydrogen

μ → eγ in Supersymmetric Seesaw

New Interactions: $\mu \rightarrow e\gamma \text{ vs } \mu \rightarrow eee, \mu A \rightarrow eA$

$$\frac{B(\mu \to 3e)}{B(\mu \to e\gamma)} = \frac{1}{12(4\pi)^2} \left(\frac{\Lambda}{\Lambda_F}\right)^4$$

Other Experiments: $\mu A \rightarrow eA$, EDM

Planned layout of MECO experiment for $\mu A \rightarrow eA$

Principle of EDM experiment

Muon Colliders?

- Extrapolate μ cooling technology
- Light Higgs Factory?
 - Standard Model vs supersymmetry?
- Factory for heavier supersymmetric Higgses?
 New probes of CP violation?
- High-energy frontier?
 - Alternative to CLIC for multi-TeV lepton collisions?

Higgs Studies at Muon Colliders

First muon collider:
Detailed measurements
of light Higgs boson:
Standard Model vs supersymmetry

Second muon collider:

Detailed measurements
of supersymmetric Higgs bosons:
Unique probe of CP violation?

Rare K Decays

Many kaons produced if high-energy source or booster ring

 $K \rightarrow \pi \nu \nu$:

Alternative window on CKM unitarity triangle

 $K \rightarrow \mu e$:

Possible window on physics beyond SM

Physics with Megawatt

- Long-range programme in v physics: superbeam, β beam, v factory
- Complementary programme in μ physics: rare μ decays, μ properties, μ colliders?
- Next-generation facility for nuclear physics also tests of SM, nuclear astrophysics
- Synergy with CERN programme: LHC, CNGS v, ISOLDE, heavy ions, β beam

Interesting project – and CERN would be a good place for it

Possible characteristics of a beta beam optimized for the $\overline{\nu}_{\rm e}$ interaction rate.

⁶ He ion production	$5 \times 10^{13} / \mathrm{s}$ every 8 s
⁶ He collection efficiency	20%
⁶ He accelerator efficiency	65%
⁶ He maximum final energy	150 GeV/nucleon
$\overline{ u}_{ m e}$ average energy	582 MeV
Storage ring total intensity	1×10^{14} ⁶ He ions
Straight section relative length	36%
Running time/year	$10^{7} { m s}$
Detector distance	100 km
$\langle E \rangle / L$	$5.9 \times 10^{-3}~\mathrm{GeV/km}$
$\overline{ u}_{\mathrm{e}}$ interaction rate on $\mathrm{H_{2}O}$	69/kton/year

Possible characteristics of a beta beam optimized for the ν_e interaction rate.

¹⁸ Ne ion production	1×10^{12} /s every 4 s
¹⁸ Ne collection efficiency	50%
¹⁸ Ne accelerator efficiency	82%
¹⁸ Ne maximum final energy	75 GeV/nucleon
ν_e average energy	279 MeV
Storage ring total intensity	1.3×10^{13} ¹⁸ Ne ions
Straight section relative length	36%
Running time/year	10^{7} s
Detector distance	130 km
$\langle E \rangle / L$	$2.1 \times 10^{-3}~\mathrm{GeV/km}$
ν_e interaction rate on ${ m H_2O}$	3.1/kton/year

Ideas about v masses and mixing

Higher-order Higgs effect:
$$\frac{(H.L)(H.L)}{M} \rightarrow m_{\nu} \sim \frac{<0|H|0>^{2}}{M}$$

Underlying Lagrangian:
$$\mathcal{L} = N_i^c(M_{\nu_D})_{ij}L_j + \frac{1}{2}N_i^c(M_{\nu_R})_{ij}N_j^c + h.c.$$

Seesaw mass matrix:

$$\mathcal{M} = \begin{pmatrix} 0 & M_{\nu_D} \\ M_{\nu_D}^T & M_{\nu_R} \end{pmatrix}$$

v mixing matrix:

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$