Klaus Jungmann, Physics with a Megawatt Proto Source, CERN 25 May 2004 Fundamental Symmetries and Interactions

Aspects of **Fundamental Symmetries and Interactions** *Physics at a Megawatt Proton Source, CERN, May 25-27, 2004*

Klaus Jungmann, Kernfysisch Versneller Instituut,Groningen

- What is Fundamental
- Forces and Symmetries
- Fundamental Fermions
- Discrete Symmetries
- Properties of Known Basic Interactions
- ~ 1GeV versus ~ 30 GeV proton driver

⇒ only scratching some examples

Aspects of Fundamental Symmetries and Interactions Physics at a Megawatt Proton Source, CERN, May 25-27, 2004

Klaus Jungmann, Kernfysisch Versneller Instituut, Groningen

Drawing on :

> Work of NuPECC Long Range Plan Working group on Fundamental Interactions, 2003 :

H. Abele (D), L. Corradi (I), P. Herczeg (USA), I.B. Khriplovich (RU), O. Nviliat (F), N. Severijns (B), L. Simons (CH), C. Weinheimer (D), H.W. Wilschut (NL), K. Jungmann (NL)

H. Leeb (A), C. Bargholtz (S)

Assisted by: W. Heil, P. Indelicato, F. Maas, K. Pachucki, R.G Timmermans, C. Volpe, K. Zuber

- NSAC Long Range Plan 2002
- > EURISOL Physics Case 2004

Recommendations

of NuPECC working group 2003

Physics Topics

- The Nature of Neutrinos
 - > Oscillations / Masses / 0v2β-decay
- T and CP Violation
 - > edm's, D (R) coeff. in β -decays, D⁰
- Rare and Forbidden Decays
 - > $0\nu 2\beta$ -decay, n-n^{bar}, M-M^{bar}, $\mu \rightarrow e\gamma$,
 - → $\mu \rightarrow 3e, \mu N \rightarrow N e$
- Correlations in β-decay
 - > non V-A in β-decay
- > Unitarity of CKM-Matrix
 - > n-, π - β , (superallowed β), K-decays
- Parity Nonconservation in Atoms
 - > Cs, Fr, Ra, Ba⁺, Ra⁺
- > CPT Conservation
 - ▶ n, e, p, μ
- Precision Studies within The Standard Model
 - > Constants, QCD, QED, Nuclear Structure

Adequate Environment

Human resources

- > Theoretical Support
- Positions at Universities
 - > Experimentalists and Theorists

Facilities

- > High Power Proton Driver
 - Several MW
 - > Target Research
- Cold and Ultracold Neutrons
- > Low Energy Radioactive Beams
- > Improved Trapping Facilities
- > Underground Facilities

May 2004 @ CERN

Recommendations

Physics Topics

- > The Nature of Neutrinos
 - > Oscillations / Masses / $0\nu 2\beta$ -decay
- T and CP Violation
 - > edm's, D (R) coeff. in β -decays, D⁰
- Rare and Forbidden Decays
 - > $0\nu 2\beta$ -decay, n-n^{bar}, M-M^{bar}, $\mu \rightarrow e\gamma$,
 - $\qquad \qquad \mu \rightarrow 3e, \ \mu \ N \rightarrow N \ e$
- Correlations in β-decay
 - > non V-A in β-decay
- > Unitarity of CKM-Matrix
 - > n-, π - β , (superallowed β), K-decays
- > Parity Nonconservation in Atoms
 - > Cs, Fr, Ra, Ba⁺, Ra⁺
- > CPT Conservation
 - ▶ n, e, p, μ
- Precision Studies within The Standard Model
 - Constants, QCD, QED, Nuclear Structure

Adequate Environment

Human resources

- > Theoretical Support
- Positions at Universities
 - > Experimentalists and Theorists

Facilities

- > High Power Proton Driver
 - Several MW
 - > Target Research
- Cold and Ultracold Neutrons
- > Low Energy Radioactive Beams
- > Improved Trapping Facilities
- > Underground Facilities

May 2004 @ CERN

Physics with a Multi-MWProton Source

Relating to a MW Proton Machine

Recommendations

Physics Topics

- Offer unique possibilities to gain
 inside into fundamental processes
 and into yet unexplained observed
 facts in nature
- Offer possibilities to measure
 needed fundamental constants
 with unprecedented accuracy

High Power Proton Driver

Relating to a MW Proton Machine

- **To obtain sufficient particles**
 - Statistics Limitations
 - Understanding Systematics

> To enable Novel Techniques

fundamental := " forming a foundation or basis, a principle, law etc. serving as a basis"

[Webbster's New World]

- Physicists in general:

 have always a tendency to put their own activities as fundamental
 renormalization of meaning

 Albert Einstein :

 I would like to know how God has made the world. I am
 not interested in one or an other phenomenon,
 not interested in the spectrum of one or another element.
 - I would like to know *His Thoughts*, everything else are just details. <

resembles literal meaning, i.e. basic, not deducible law

May 2004 @ CERN

What are we concerned with P

fundamental := " forming a foundation or basis a principle, law etc. serving as a basis"

Forces and Symmetries

Local Symmetries ⇔ Forces • fundamental interactions

Global Symmetries \Leftrightarrow Conservation Laws

- energy
- momentum
- electric charge
- lepton number
- charged lepton family number
- baryon number

• • • • • • •

May 2004 @ CERN

What are we concerned with P

fundamental := " forming a foundation or basis a principle, law etc. serving as a basis"

May 2004 @ CERN

Standard Model

- 3 Fundamental Forces
 - Electromagnetic Weak Strong
- 12 Fundamental Fermions
 - Quarks, Leptons
- 13 Gauge Bosons
 - γ,W⁺, W⁻, Z⁰, H, 8 Gluons

However

- many open questions
 - Why 3 generations ?
 - Why some 30 Parameters?
 - Why CP violation ?
 - Why us?
 - • • •
- Gravity not included
- No Combind Theory of Gravity and Quantum Mechanics

Fundamental Interactions – Standard Model

Fundamental Fermions

- Neutrinos
 - Neutrino Oscillations
 - Neutrino Masses
- Quarks
 - Unitarity of CKM Matrix
- Rare decays
 - Baryon Number
 - Lepton Number/Lepton Flavour
- **New Interactions in Nuclear and Muon β-Decay**

Fundamental Fermions

Neutrinos

Neutrino Oscillations

Neutrino Masses

- Quarks
 - Unitarity of CKM Matrix
- Rare decays
 - Baryon Number
 - Lepton Number/Lepton Flavour
- **New Interactions in Nuclear and Muon β-Decay**

Neutrino-Experiments

SNO

Superkamiokande

u detector

$$P(v_{\alpha} \rightarrow v_{\beta}) = \sin^2(2\Theta) * \sin^2\left(\frac{\Delta m_{ij}^2 * I}{4E}\right)$$

Recent observations could be explained by oscillations of massive neutrinos.

Many Remaining Problems

- really oscillations ?
- sensitive to Δm^2
- Masses of Neutrino
- Nature of Neutrino
 - Dirac
 - Majorana
- \rightarrow Neutrinoless Double β -Decay
- Direct Mass Measurements are indicated
- → Spectrometer
- Long Baseline Experiments
- $\rightarrow \beta$ -beams
- \rightarrow new neutrino detectors ?

May 2004 @ CERN

Neutrino mixing and oscillation

Neutrinos mix and oscillate \Rightarrow non-zero neutrino masses:

(solar, long baseline reactor and accelerator v)

May 2004 @ CERN

Neutrino-Experiments Are there new detection schemes ?

Fundamental Fermions

- Neutrinos
 - Neutrino Oscillations
 - Neutrino Masses
- Quarks

Unitarity of CKM Matrix

- Rare decays
 - Baryon Number
 - Lepton Number/Lepton Flavour
- **■** New Interactions in Nuclear and Muon β-Decay

Unitarity of Cabbibo-Kobayashi-Maskawa Matrix

CKM Matrix couples weak and mass quark eigenstaes:

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} =$$
739(5) 0.221(6) 0.0036(12)

(0.9739(5)	0.221(6)	0.0036(12)
	0.223(4)	0.9740(8)	0.041(3)
	0.008(4)	0.0041(4)	0.9992(2)

Unitarity:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 - \Delta$$

May 2004 @ CERN

Fig. 42: Super-allowed $0+ \rightarrow 0+$ transitions which allow us to test the CVC hypothesis of the weak interaction. The values for the heavier nuclei have been measured using the relatively weak intensities from present radioactive beam facilities. Using these data to check the theoretically determined corrections needs higher statistical precision.

May 2004 @ CERN

Unitarity of Cabbibo-Kobayashi-Maskawa Matrix

May 2004 @ CERN

CKM Unitarity

- May relate to New Physics Heavy Quark Mixing, Z', Extra Dimensions, Charged Higgs, SUSY, exotic muon decays, ..., more generations !
- Unfortunatelly: Situation is a mess !
 - V_{ud}: superallowed β-decays
 0.9740(3)(4)

 neutron decay
 0.9729(4)(11)(4)

 pion-β decay
 0.9737(39)(2)
 - V_{us} : Hyperons $\Delta = 0.0019 (16)$ K^{+}_{e3} $\Delta = 0.0014 (17)$ K^{0}_{e3} $\Delta = 0.0054 (14)$ Problem !

Numbers Compiled by W. Marciano, March '04

- What can be done?
 - Improve reliability of experiments independently pion- β decay (theory clean!), maybe: neutron- decay
 - > Analyse existing K data, K_{e3} experiments
 - Search for exotic muon decays
 - Improve Theory

Fundamental Fermions

- Neutrinos
 - Neutrino Oscillations
 - Neutrino Masses
- Quarks
 - Unitarity of CKM Matrix
- Rare decays
 - Baryon Number
 - Lepton Number/Lepton Flavour
- **■** New Interactions in Nuclear and Muon β-Decay

Muon Physics Possibilities at Any High Power Proton Driver i.e. $\geq 4 \text{ MW}$

Type of Experiment	Physics Issues	Possible Experiments	previously established accuracy	present activities (proposed accuracy)	projected for NUFACT @ CERN
"Classical" Rare & Forbidden Decays	Lepton Number Violation; Searches for New Physics: SUSY, L-R Symmetry, R-parity violation,	$\mu^- N ightarrow e^- N \ \mu ightarrow e \gamma \ \mu ightarrow e e e \ \mu^+ e^- ightarrow \mu^- e^+$	$6.1 \times 10^{-13} \\ 1.2 \times 10^{-11} \\ 1.0 \times 10^{-12} \\ 8.1 \times 10^{-11}$	PSI, proposed BNL (5×10^{-17}) proposed PSI (2×10^{-14}) completed 1985 PSI completed 1999 PSI	$ < 10^{-18} < 10^{-15} < 10^{-16} < 10^{-13} $
Muon Decays	G_F ; Searches for New Physics; Michel Parameters	$ au_{\mu} \ transv.Polariz.$	$\frac{18 \times 10^{-6}}{2 \times 10^{-2}}$	PS1 (2x), RAL (1×10^{-6}) PS1, TRIUMF (5×10^{-3})	$< 10^{-7} < 10^{-3}$
Muon Moments	Standard Model Tests; New Physics; CPT Tests T- resp. CP-Violation in 2nd lepton generation	$g_{\mu}-2\ edm_{\mu}$	$1.3 imes 10^{-6}$ $3.4 imes 10^{-19} e cm$	BNL (3.5×10^{-7}) proposed BNL $(10^{-24} e \ cm)$	$< 10^{-7}$ $< 5 \times 10^{-26} e cm$
Muonium Spectroscopy	Fundamental Constants, $\mu_{\mu}, m_{\mu}, \alpha$; Weak Interactions; Muon Charge	$M_{HFS} M_{1s2s}$	12×10^{-9} 1×10^{-9}	completed 1999 LAMPF completed 2 000 R AL	5×10^{-9} < 10 ⁻¹¹
Muonic Atoms	Nuclear Charge Radii; Weak Interactions	$\mu^- atoms$	depends	PSI, possible CERN ($< r_p > to 10^{-3}$)	new nuclear structure
Condensed Matter	surfaces, catalysis bio sciences	surface μ SR	n/a	PS1, RAL (n/a)	high rate

May 2004 @ CERN

Muon Physics Possibilities at Any High Power Proton Driver i.e. $\geq 4 \text{ MW}$

Experiment	q_{μ}	$\int I_{\mu}dt$	I_0/I_{μ}	δT	$\mid \Delta T$	E_{μ}	$\Delta p_{\mu}/p_{\mu}$
				[ns]	[µs]	[MeV]	[%]
$\mu^- N ightarrow e^- N^{\dagger}$	_	10^{19}	$ < 10^{-10}$	≤ 100	≥ 1	< 20	< 10
$\mu^- N \to e^- N^{\ddagger}$	_	10^{19}	n/a	n/a	n/a	< 20	< 10
$\mu ightarrow e \gamma$	+	10^{17}	n/a	n/a	n/a	14	< 10
$\mu \rightarrow eee$	+	10^{17}	n/a	n/a	n/a	14	< 10
$\mu^+e^- ightarrow \mu^-e^+$	+	10^{16}	$< 10^{-4}$	< 1000	≥ 20	14	12
$ au_{\mu}$	+	10^{14}	$< 10^{-4}$	< 100	≥ 20	4	110
transvers.polariz.	+	10^{16}	$< 10^{-4}$	< 0.5	> 0.02	30-40	13
$g_{\mu}-2$		10^{15}	$< 10^{-7}$	≤ 50	$\ge 10^3$	3100	10^{-2}
edm_{μ}	\pm	10^{16}	$< 10^{-6}$	≤ 50	$\ge 10^3$	≤ 1000	$\leq 10^{-3}$
M_{HFS}	+	10^{15}	$< 10^{-4}$	≤ 1000	≥ 20	4	13
M_{1s2s}	+	10^{14}	$< 10^{-3}$	≤ 500	$\geq 10^{3}$	14	12
$\mu^{-}atoms$	-	10^{14}	$< 10^{-3}$	≤ 500	≥ 20	14	15
condensed matter	±	10^{14}	$< 10^{-3}$	< 50	≥ 20	14	15
(incl.bio sciences)							

May 2004 @ CERN K Jungmann 18-Apr-2001

Searches for Lepton Number Violation

Searches for Lepton Number Violation

Old Muonium for Muonium-Antimuonium Conversion ?

- $P(\overline{M}) \propto \sin^2 [const * (G_{M\overline{M}}/G_F)*t]*exp[-\lambda_{\mu}*t]$
- Background $\propto exp(-n \lambda_{\mu}^*t)$; n-fold coincidence detection
- For $G_{M\overline{M}} \ll G_F$ M gains over Background
- P(\overline{M}) / Background $\propto t^2 * exp[+(n-1)* \lambda_{\mu}*t]$

$\Rightarrow Pulsed ACCELERATOR$

Fundamental Fermions

Neutrinos

- Neutrino Oscillations
- Neutrino Masses
- Quarks
 - Unitarity of CKM Matrix
- Rare decays
 - Baryon Number
 - Lepton Number/Lepton Flavour

New Interactions in Nuclear and Muon β-Decay

New Interactions in Nuclear and Muon β -Decay

In Standard Model: Weak Interaction is V-A

In general β-decay could be also S, P, T

$$\begin{split} \frac{\mathrm{d}^2 W}{\mathrm{d}\Omega_e \mathrm{d}\Omega_{\nu}} &\sim 1 + a \, \frac{p \cdot \hat{\boldsymbol{q}}}{E} + b \, \Gamma \, \frac{m_e}{E} \\ &+ \langle \boldsymbol{J} \rangle \cdot \left[A \, \frac{p}{E} + B \, \hat{\boldsymbol{q}} + D \, \frac{p \times \hat{\boldsymbol{q}}}{E} \right] \\ &+ \langle \boldsymbol{\sigma} \rangle \cdot \left[G \, \frac{p}{E} + Q \, \langle \boldsymbol{J} \rangle + R \, \langle \boldsymbol{J} \rangle \times \frac{p}{E} \right] \end{split}$$

Discrete Symmetries

- Parity
 - Parity Nonconservation in Atoms
 - Nuclear Anapole Moments
 - Parity Violation in Electron-Scattering
- Time Reversal and CP-Violation
 - Electric Dipole Moments
 - R and D Coefficients in β-Decay
- CPT Invariance

Discrete Symmetries

Parity

- Parity Nonconservation in Atoms
- Nuclear Anapole Moments
- Parity Violation in Electron-Scattering
- **Time Reversal and CP-Violation**
 - Electric Dipole Moments
 - R and D Coefficients in β-Decay
- CPT Invariance

Parity non-conservation experiments

Discrete Symmetries

Parity

- Parity Nonconservation in Atoms
- Nuclear Anapole Moments
- Parity Violation in Electron-Scattering

Time Reversal and CP-Violation

- Electric Dipole Moments
- CPT Invariance

May 2004 @ CERN

Some EDM Experiments compared

 $d(muon) < 7 \times 10^{-19}$

EDM: What Object to Choose ?

	limit on edm		improvement	new physics
particle	d [e cm] (95% C.L.)	system	factor	limits $[e \text{ cm}]$
e	1.9×10^{-27}	205Tl	> 1	10^{-27}
μ	1.05×10^{-19}	rest frame E	10^{3}	10^{-22}
τ	3.1×10^{-16}	$(e^+e^- \rightarrow \tau^+\tau^-\gamma)$	10^{4}	10^{-20}
p	6.5×10^{-23}	205 Tl-F	10^{4}	5×10^{-26}
n	7.5×10^{-26}	ultracold neutrons	> 1	5×10^{-26}
Λ	1.5×10^{-16}	rest frame E	10^{7}	10^{-23}
¹⁹⁹ Hg	2.1×10^{-28}	¹⁹⁹ Hg	> 1	10^{-28}
Ξ^0	?	as Λ	?	10^{-23}

²⁰⁵Tl: $d = -585 d_e$

Table 1: Current limits on edm's, converted to a common 95% confidence limit. The improvement factor indicates how much the measurement needs to be improved to yield new physics limits. No data in the charmed sector

Precession frequency ω due to a particle with anomalous magnetic moment a = g/2 - 1 and edm d

$$\begin{split} \omega &= -\frac{e}{m} \left[a \mathbf{B} - a \frac{\gamma}{\gamma + 1} \mathbf{v} (\mathbf{v} \cdot \mathbf{B}) - \left(a - \frac{1}{\gamma^2 - 1} \right) \mathbf{v} \times \mathbf{E} \right] \\ &- \frac{d}{2} \left[\mathbf{E} - \frac{\gamma}{\gamma + 1} \mathbf{v} (\mathbf{v} \cdot \mathbf{E}) + \mathbf{v} \times \mathbf{B} \right] \end{split}$$

 199 Hg: d \propto nucl \times atom

Ra: Ra/Hg= $(10^{>1})(10^{>3})$

Theoretical input needed

May 2004 @ CERN

EDMs – Where do they come from ?

(are they just "painted" to particles? Why different experiments?)

- electron
- quark
- muon
- neutron/ proton
- deuteron
- ⁶Li
- heavy nuclei (e.g. Ra, Fr)
- atoms
- molecules
-

May 2004 @ CERN

intrinsic? intrinsic? second generation different ? from quark EDM ? property of strong interactions? new interactions? basic nuclear forces CP violating? pion exchange? many body nuclear mechanism? enhancement by CP-odd nuclear forces, nuclear "shape" can have large enhancement, sensitive to electron or nucleus EDMs large enhancement factors, sensitive to electron EDM

Generic EDM Experiment

How does a ring edm experiment work?

Some Candidate Nuclei

	Nucleus	Spin J	μ/μ_N	Reduced Anomaly a	T _{1/2}
	¹³⁹ 57La	7/2	+2.789	-0.0305	
	$^{123}51}$ Sb	7/2	2.550	-0.1215	
	$^{137}_{55}$ Cs	7/2	+2.8413	0.0119	30y
	$^{223}_{87}$ Fr	3/2	+1.17	< 0.02	22 min
Ī	⁶ ₃ Li	1	+0.8220	-0.1779	
	2 ₁ H	1	+0.8574	-0.1426	
	⁷⁵ 32Ge	1/2	+0.510	+0.195	82.8 m
	¹⁵⁷ ₆₉ Tm	1/2	+0.476	0.083	3.6 m

Time Reversal Violation in β-decay: Correlation measurements

$$\begin{split} \frac{\mathrm{d}^2 W}{\mathrm{d}\Omega_e \mathrm{d}\Omega_{\nu}} \sim & 1 + a \, \frac{\boldsymbol{p} \cdot \hat{\boldsymbol{q}}}{E} + b \, \Gamma \, \frac{m_e}{E} \\ & + \langle \boldsymbol{J} \rangle \cdot \left[A \, \frac{\boldsymbol{p}}{E} + B \, \hat{\boldsymbol{q}} + D \, \frac{\boldsymbol{h} \times \hat{\boldsymbol{q}}}{E} \right] \\ & + \langle \boldsymbol{\sigma} \rangle \cdot \left[G \, \frac{\boldsymbol{p}}{E} + Q \, \langle \boldsymbol{J} \rangle + R \, \boldsymbol{M} \rangle \times \frac{\boldsymbol{p}}{E} \right] \end{split}$$

R and D test both Time Reversal Violation

- $D \rightarrow \text{most potential}$
- $\mathbf{R} \rightarrow \text{scalar and tensor (EDM, a)}$
- technique *D* measurements yield *a*, *A*, *b*, *B*

$$\langle \vec{J} \cdot \vec{p} \times \vec{q} \rangle \neq 0$$
 ?

Discrete Symmetries

Parity

- Parity Nonconservation in Atoms
- Nuclear Anapole Moments
- Parity Violation in Electron-Scattering
- **Time Reversal and CP-Violation**
 - Electric Dipole Moments
 - R and D Coefficients in β-Decay

CPT Invariance

CPT – Violation Lorentz Invariance Violation

What is best CPT test ?

often quoted:

- K⁰- K⁰ mass difference (10⁻¹⁸)
- e⁻ e⁺ g- factors (2* 10⁻¹²)
- We need an interaction with a finite strength ! New Ansatz (Kostelecky)

• K ⁰	≈ 10 ⁻¹⁸	GeV/c ²

- n $\approx 10^{-30} \text{ GeV/c}^2$
- p $\approx 10^{-24} \text{ GeV/c}^2$
- e $\approx 10^{-27} \text{ GeV/c}^2$

• μ $\approx 10^{-23} \text{ GeV/c}^2$

• Future: Anti hydrogen ≈ 10⁻¹⁸ GeV/c²

Leptons in External Magnetic Field

 \Rightarrow electron $\mathbf{r_e} \leq 1.2 \cdot 10^{-21}$

Bluhm , Kostelecky, Russell, PhysRev. D 57,3932 (1998)

For g2 Experiments : $\frac{\hbar\omega_c}{|\mathbf{a}_{l^-} - \mathbf{a}_{l^+}|}$

Dehmelt, Mittleman, Van Dyck, Schwinberg, heph/9906262

muon: $r_{\rm II} \leq 3.5.1$

CPT and Lorentz Invariance from Muon Experiments

V.W. Hughes et al., Phys.Rev. Lett. 87, 111804 (2001)

Muonium:

new interaction below

2*10-23 GeV

Muon g-2:

new interaction below

4* 10⁻²² GeV (CERN)

15 times better expected from BNL when analysis will be completed

May 2004 @ CERN

Properties of Known Basic Interactions

- Electromagnetism and Fundamental Constants
 - ♦ QED, Lamb Shift
 - ◆ Muonium and Muon g-2
 - Muonic Hydrogen and Proton Radius
 - Exotic Atoms
 - ◆ Does α_{QED} vary with time?
- QCD
 - Strong Interaction Shift
 - Scattering Lengths
- Gravity
 - Hints of strings/Membranes?

May 2004 @ CERN

Newest Theory Offer: 2.4 σ from Experiment

Strong Interaction Shift

May 2004 @ CERN

Search for New Physics What are the hardronic corrections?

- $e^++e^- \rightarrow hadrons$
- $e^++e^- \rightarrow \gamma + hadrons$

New activities Planned

- statistics limited experiment
- J-PARC, BNL
- Fundamental constants needed
- Muonium

Properties of Known Basic Interactions

Electromagnetism and Fundamental Constants

- ♦ QED, Lamb Shift
- Muonium and Muon g-2
- Muonic Hydrogen and Proton Radius
- Exotic Atoms
- Does α_{QED} vary with time?

QCD

- Strong Interaction Shift
- Scattering Lengths

Gravity

• Hints of strings/Membranes?

May 2004 @ CERN

Time Variation of α

Properties of Known Basic Interactions

Electromagnetism and Fundamental Constants

- ♦ QED, Lamb Shift
- Muonium and Muon g-2
- Muonic Hydrogen and Proton Radius
- Exotic Atoms
- Does α_{QED} vary with time?

QCD

- Strong Interaction Shift
- Scattering Lengths

Gravity

Hints of strings/Membranes?

May 2004 @ CERN

Standing Waves of Ultra Cold Neutrons in a gravitational field

May 2004 @ CERN

Multi-MWProton Source

Standing Waves of Ultra Cold Neutrons

May 2004 @ CERN

Recommendations **Physics Topics High power Proton Driver** ~1GeV ~ 30 GeV **The Nature of Neutrinos** (\times) (X)> Oscillations / Masses / $0v2\beta$ -decay **T** and **CP** Violation \otimes \otimes > edm's, D (R) coeff. in β -decays, D⁰ **Rare and Forbidden Decays** \otimes > $0\nu 2\beta$ -decay, n-n^{bar}, M-M^{bar}, $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e, \ \mu N \rightarrow N e$ \otimes **Correlations in β-decay** > non V-A in β -decay \otimes **Unitarity of CKM-Matrix** \otimes \otimes > n-, π - β , (superallowed β), K-decays **Parity Nonconservation in Atoms** \succ Cs, Fr, Ra, Ba⁺, Ra⁺ **CPT Conservation** \otimes \otimes > n, e, p, μ **Precision Studies within The Standard** Model \otimes (\times) > Constants, QCD, QED, Nuclear Structure Physics with a May 2004 @ CERN 54 Multi-MWProton Source

Conclusion Particle Physics – Nuclear Physics ?

• Gregory Breit,

when asked at Yale whether a new colleague should be an atomic theorist, a nuclear theorist, an astro-physcist or work in the then new field of particle physics:

> There are only Good Theorists and bad ones <

- Accordingly:
 - It's time to build jointly a powerful machine to serve Good Physics. A Multi-Megawatt Proton Driver has a very Large Potential to serve Good Physics, particularly in the merging fields of nuclear, particle and astro-physics.

Thank YOU !

SPARES

May 2004 @ CERN

Fig. 43: Calculated Coulomb corrections as a function of the atomic number of the daughter nucleus. The blue diamonds correspond to the nine best known super-allowed transitions. The red dots present the corrections for the $T_z = -1$ emitters between ¹⁸Ne and ⁴²Ti. The pink diamonds are the corrections for the $T_z = 0$ transitions from ⁶²Ga to ⁷⁴Rb [215].

May 2004 @ CERN

May 2004 @ CERN

K. Zuber, Univ. of Oxford

Droaches under the solopes (especially 116Cd and 130Te) there and conclusion limits for both below 1 eV Study of the solope the solope of th

Future option: Pixel CdTe (Tracking) Isotopical enrichment

First results: nucl-ex/0301007

Detector array

Fundamental Interactions – Standard Model

Physics within the Standard Model --- Searches for New Physics

May 2004 @ CERN

			electron	neutron	
	ALL ORDINARY MATTER BELONGS TO THIS GROUP.	LEPT electron Electric charge –1. Responsible for electricity and chemical reactions	ONS electron neutrino Electric charge 0. Rarely interacts with other matter.	QUA up Electric charge + 2/3. Protons have 2 up quarks Neutrons have 1 up quark	RKS down Electric charge -1/3. and one down quark. and two down quarks.
in the state of the	THESE PARTICLES EXISTED JUST AFTER THE BIG BANG.	muon A heavier relative of the electron.	muon neutrino Created with muons when some ° particles decay.	charm A heavier relative of the up.	strange A heavier relative ' of the down.
	FOUND ONLY IN COSMIC RAYS AND ACCELERATORS.	Heavier still.	Not'yet observed directly. • TER un antimatter mirror image. –	Heavier still, recently observed.	Heavier still.

May 2004 @ CERN

Fine Structure Constant $\boldsymbol{\alpha}$

Semsifivity_

$$d_{N} = 2 \cdot 5 \cdot 10^{-15} ecm$$

 $\gg d_{N} = 10^{-24} ecm \implies 2 = 2 \cdot 10^{-10}$

Error in
$$h$$
:

$$\int_{N}^{\infty} = \frac{1}{8 \cdot T_{i} \cdot P_{beam} \cdot H_{deteclor} \cdot \xi \cdot M_{k} \cdot B \cdot \sqrt{2} \cdot N_{k}}$$

$$\begin{cases} s = \frac{1}{\sqrt{1-y_{i}^{2}}} \approx 1.5 \\ T_{i} = 1 \text{ sec} \end{cases}$$

$$P_{beam} \approx 0.5$$

$$F_{deteclor} \approx 0.1$$

$$\xi = 75\%$$

$$B = 1 T$$

$$M_{k} = 7.60 \frac{MH_{k}}{T}$$

$$K = 7.60 \frac{MH_{k}}{T}$$

$$K = 7.60 \frac{MH_{k}}{T}$$

May 2004 @

Who ordered THAT?!?!

May 2004 @ CERN